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(GÉNIE INFORMATIQUE)
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Abstract

Computer systems, both at the hardware and software-levels, are becoming in-

creasingly complex. In the case of Linux, used in a large range of applications, from

small embedded devices to high-end servers, the size of the operating system kernels

increases, libraries are added, and major software redesign is required to benefit from

multi-core architectures, which are found everywhere. As a result, the software de-

velopment industry and individual developers are facing problems which resolution

requires to understand the interaction between applications and all components of an

operating system.

In this thesis, we propose the LTTng (Linux Trace Toolkit next generation) tracer

as an answer to the industry and open source community tracing needs. The low-

intrusiveness of the tracer is a key aspect to its usefulness, because we need to be

able to reproduce, under tracing, problems occurring in normal conditions. In some

cases, users leave tracers active at all times in production, which makes the tracer

overhead definitely critical. Our approach involves the design of synchronization

primitives that meet the low-impact requirements. The linearly scalable and wait-free

RCU (Read-Copy Update) synchronization mechanism used by the LTTng tracer fulfills

these requirements with respect to data read. A custom-made buffer synchronization

scheme is proposed to extract tracing data while preserving linear scalability and

wait-free characteristics.

By measuring the LTTng impact, we demonstrate that it is possible to create a

tracer that satisfy all the following characteristics: low latency, deterministic real-

time impact (wait-free), small impact on operating system throughput and linear

scalability with the number of cores. Experiments on various architectures show that

this tracer is portable.

We propose a general model for superscalar multi-core systems with weakly-

ordered memory accesses to perform formal verification of the RCU correctness and

wait-free guarantees by model-checking. The LTTng buffering scheme is also for-

mally verified for safety and progress. Formal verification demonstrates that these

algorithms allow reentrancy from multiple execution contexts, ranging from standard

thread to non-maskable interrupts handlers, allowing a wide instrumentation coverage
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of the operating system.
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Résumé

Les systèmes informatiques, tant au niveau matériel que logiciel, deviennent de

plus en plus complexes. En ce qui concerne Linux, système d’exploitation utilisé

dans une vaste catégorie d’applications, des petits systèmes embarqués aux serveurs

de haut-niveau, la taille des noyaux de systèmes d’exploitations augmente, des li-

brairies sont ajoutées et une réingénierie logicielle est requise pour bénéficier des

architectures multi-cœurs, lesquelles sont omniprésentes. Par conséquent, l’industrie

du développement logiciel et les développeurs individuels font face à des problèmes

dont la résolution nécessite de comprendre l’interaction entre les applications et tous

les composants d’un système d’exploitation.

Dans cette thèse, nous proposons le traceur LTTng (Linux Trace Toolkit next

generation) comme réponse aux besoins de traçage de l’industrie et de la commu-

nauté du logiciel libre. La faible intrusivité du traceur est un aspect clé menant à

son utilisabilité, puisqu’il est nécessaire de reproduire, sous traçage, des problèmes

observés sous des conditions d’exécution normales. Dans certains cas, les usagers

souhaitent laisser des traceurs actifs en tout temps sur des systèmes en production,

ce qui rend l’impact en performance définitivement critique. Notre approche implique

l’élaboration de primitives de synchronisation qui rencontrent les requis de faible im-

pact. Le mécanisme de synchronisation permettant la mise à l’échelle et sans attente

RCU (Read-Copy Update) utilisé par le traceur LTTng remplit ces requis en ce qui con-

cerne la lecture de données. Nous proposons un mécanisme de synchronisation pour

extraire les données de traçage en préservant les caractéristiques de mise à l’échelle

linéaire et de non-attente.

En mesurant l’impact du traceur LTTng, nous démontrons qu’il est possible de

créer un traceur qui satisfait toutes les caractéristiques suivantes : faible latence,

comportement temps-réel déterministe (sans attente), faible impact sur le débit du

système d’exploitation et une mise à l’échelle linéaire par rapport au nombre de

processeurs. Une expérimentation sur plusieurs architectures permet d’observer la

portabilité du traceur.

Nous proposons un modèle général pour les systèmes superscalaires multi-cœurs

avec accès mémoire faiblement ordonnés pour permettre la vérification formelle des



viii

garanties quant à l’exactitude de l’exécution et l’exécution sans attente à l’aide de

la vérification de modèle. Le mécanisme de tampon de LTTng est également vérifié

formellement quant à son exactitude et son exécution sans attente. La vérification

formelle permet également de démontrer que ces algorithmes permettent la réentrance

de plusieurs contextes d’exécution, du fil d’exécution standard aux gestionnaires d’in-

terruptions non-masquables, permettant une large couverture d’instrumentation du

système d’exploitation.
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Condensé en français

La croissance en complexité des systèmes informatiques actuels rend les tâches

de déverminage et l’analyse de performance de plus en plus difficiles. Le besoin en

outils d’analyse qui tiennent compte de l’ensemble du système se fait sentir, mais leur

impact en performance est généralement un obstacle à leur adoption.

Le traçage est une technique éprouvée pour permettre l’étude des interactions

entre composants d’un système informatique, mais son impact en performance le

rend inutilisable sous plusieurs charges de calcul. Cette recherche tente de rendre le

traçage largement utilisable par une vaste catégorie d’applications.

Il importe également pour un traceur de modifier le comportement du système

observé de façon minimale afin de permettre la reproductibilité des problèmes observés

sans traçage. Il est également important que le traceur n’utilise qu’une fraction des

ressources du système et ne modifie son comportement que de façon déterministe afin

de permettre une activation du traçage sur des systèmes en production.

Le problème étudié dans ce travail est l’extraction d’information de traçage d’un

système d’exploitation, ce qui implique la collecte d’information à partir de l’exécution

de ce système d’exploitation et le transfert de cette information hors du noyau. Les

aspects de ce problème qui rendent cette étude intéressante sont l’impact du traceur

sur le fonctionnement du système et la couverture d’instrumentation : quelles parties

du système peuvent êtres instrumentées.

L’hypothèse servant de point de départ à cette étude est qu’il est possible de tracer

un système d’exploitation qui exécute une charge de travail élevée sur des ordinateurs

multiprocesseurs, en n’utilisant qu’une petite fraction des ressources systèmes, tout

en permettant l’instrumentation de n’importe quel site noyau ou usager, rendant ainsi

possible la modélisation du comportement original du système. Ceci implique l’utili-

sation d’une fraction du débit du système ainsi qu’un ajout d’une faible quantité à sa

latence moyenne. La conservation des propriétés suivantes du système d’exploitation

est recherchée : mise à l’échelle, réponse temps-réel, portabilité et réentrance.

Le but de cette étude est la création d’un traceur à faible impact, hautement

réentrant et permettant la mise à l’échelle, pour le noyau d’un système d’exploitation

largement utilisé : Linux. Cette infrastructure doit être capable de gérer un débit de



x

traçage généré par des charges de travail élevées sur des systèmes multiprocesseurs.

Celui-ci doit préserver, ou modifier dans une faible proportion, les caractéristiques du

noyau Linux.

Les objectifs de recherche sont les suivants :

– rencontrer les requis de traçage de l’industrie et de la communauté du logiciel

libre,

– mettre au point de nouveaux algorithmes pour solutionner les problèmes de

l’industrie identifiés,

– implanter un traceur pour Linux, un système d’exploitation largement utilisé,

– développer chaque composant du traceur afin que leur combinaison conserve les

propriétés de mise à l’échelle et ait un faible impact sur le débit et la latence

moyenne du système d’exploitation,

– garantir un impact temp-réel déterministe du traçage,

– obtenir des mécanismes de traçage ayant une portabilité et réentrance accrues.

La contribution scientifique principale de cette recherche est la création de méca-

nismes de synchronisation adaptés au traçage, incluant : un algorithme de synchro-

nisation de tampons sans attente, pouvant être mis à l’échelle de manière linéaire

et supportant les NMIs (interruptions non-masquables), l’application de techniques

d’auto-modification de code pour gérer l’activation d’instrumentation statique de

manière efficace, l’amélioration des mécanismes de synchronisation RCU en espace us-

ager et la création d’un modèle d’architecture générique pour la vérification formelle

d’algorithmes parallèles, modélisant les accès mémoire et l’ordonnancement d’instruc-

tions faiblement ordonnés. Ces contributions permettent l’atteinte des objectifs de

recherche identifiés.

La méthodologie utilisée pour répondre à ces objectifs se détaille comme suit. Une

interaction avec l’industrie et la communauté du logiciel libre permet initialement

d’obtenir plus d’information sur le contexte d’utilisation typique et les besoins perçus

en entreprise. Des stages chez IBM Research, Google, ainsi qu’une collaboration avec

Autodesk et Ericsson, ont permis de mieux comprendre ces besoins. En parallèle

avec cette étude de terrain, des prototypes du traceur sont réalisés et proposés aux

communautés LTT et du noyau Linux afin de bénéficier de leurs commentaires. À

travers les phases de son développement, LTTng est testé avec des charges de travail

extrêmes, et l’utilisation de bancs d’essais en performance permettent de s’assurer que

l’impact du traceur se situe dans des limites acceptables. La vérification de modèle est
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utilisée afin de vérifier formellement les algorithmes de synchronisation de tampons

quant à leur exactitude ainsi que d’assurer l’absence de famine.

Tôt dans le développement, j’ai identifié le besoin de découpler l’instrumenta-

tion du traceur, dans le but de permettre à des contributeurs externes et experts de

procéder à l’instrumentation de chaque sous-système du noyau. C’est pourquoi j’ai

créé les Kernel Markers et Tracepoints afin de permettre de gérer cette instrumen-

tation et aider à l’ajout d’instrumentation dans le noyau Linux. Ces infrastructures

sont maintenant intégrées dans le noyau Linux et utilisées largement par la commu-

nauté de développeurs Linux.

Plusieurs prototypes de traceur pour l’espace usager ont également été réalisés au

cours de ce projet. Le projet UST (User-Space Tracer) présentement en cours bénéficie

de l’expérience acquise via l’implantation de ces prototypes, réutilisant l’algorithme de

synchronisation de tampons de LTTng ainsi que les mécanismes de Kernel Markers et

Tracepoints. Un aspect clé de la conception du traceur LTTng pour permettre la mise à

l’échelle et un faible impact sur les performances est l’utilisation de RCU (Read-Copy

Update) pour la synchronisation de l’accès en lecture aux données de contrôle du

traçage. Cependant, puisque ce mécanisme était inexistant en espace usager, nous

avons conçu de nouveaux algorithmes permettant à RCU d’être utilisé dans ce contexte

plus contraint. Ce travail a été effectué en collaboration avec Paul E. McKenney, Alan

Stern et Jonathan Walpole. J’ai procédé à la mise en application de ces algorithmes en

les implantant dans une librairie de synchronisation RCU offrant des services similaires

à ceux de l’implantation du noyau Linux.

Vu la complexité des algorithmes de RCU et de synchronisation de tampon de

LTTng, procéder à leur vérification formelle est souhaitable afin d’augmenter le niveau

de confiance dans leur implantation. J’ai donc entrepris la tâche de créer un modèle

de processeurs avec accès mémoire et exécution faiblement ordonnés, afin d’assurer

l’exactitude et le progrès au plus bas niveau, tout en restant assez général pour assurer

la portabilité de l’implantation des algorithmes.

Afin de s’assurer que le traceur respecte l’ensemble de ces propriétés, il faut s’at-

tarder à chaque mécanisme qui le composent, tant au niveau du support à l’instru-

mentation, de la lecture de temps, du contrôle du traçage que de la synchronisation

des tampons. Ces mécanismes sont coordonnés par l’exécution de la sonde (probe).

Le schéma fonctionnel de celle-ci se retrouve à la Figure 0.1.

Au niveau de l’instrumentation, j’ai créé les mécanismes de Tracepoints et Linux
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Figure 0.1 Schéma fonctionnel de la sonde LTTng
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Kernel Markers. Ceux-ci dépendent du mécanisme de synchronisation RCU de manière

extensive pour assurer la cohérence des données pointant vers les fonctions de rappels.

L’exécution de ces primitives implique donc l’utilisation d’un verrou en lecture RCU,

lequel est sans attente et pouvant être mis à l’échelle linéairement.

Afin de minimiser l’impact sur l’exécution du noyau Linux lorsque l’instrumen-

tation est désactivée, j’ai créé le mécanisme Immediate Values, lequel permet l’acti-

vation de branchements en procédant à la modification dynamique d’instructions à

l’exécution. Celui-ci se base sur une technique de détournement de l’exécution par

breakpoint combiné avec une synchronisation des processeurs par interruption inter-

processeurs, ce qui permet de conserver la caractéristique de réentrance.

La source de temps utilisée est une lecture directe du compteur de cycles lorsque

celui-ci est disponible. Cependant, lorsqu’il est nécessaire de compléter l’information

de temps lue du matériel par de l’information complémentaire dans une structure de

données en mémoire, il faut également procéder à une synchronisation des accès à cette

structure. J’ai donc créé un mécanisme de gestion d’horloge de traçage permettant l’

extension d’un compteur de cycles limité à 32 bits vers un compteur 64-bit complet

en utilisant une technique basée sur les RCU. Ceci permet donc d’accéder à une base

de temps sans toutefois perdre les propriétés recherchées, puisqu’un simple verrou en

lecture RCU est requis.

Les accès aux structures de données de contrôle du traçage sont également synchro-

nisés par le mécanisme de RCU, ce qui permet d’altérer le comportement du traçage

alors que celui-ci est en cours d’exécution tout en conservant l’ensemble des propriétés

recherchées.

Finalement, un composant d’importance majeure, duquel LTTng est formé, est le

mécanisme de synchronisation de tampons. Celui-ci gère l’écriture de données dans

un tampon partagé entre contextes d’exécution. Il est donc impossible d’utiliser un

verrou en lecture RCU pour cette synchronisation, puisqu’il s’agit ici de synchroniser

des écritures.

En s’assurant que chaque composant du traceur respecte les propriétés recherchées,

on démontre, par construction, que le traceur dans son ensemble les respecte également.

L’expérimentation réalisée afin de s’assurer du respect des propriétés d’impact sur

la mise à l’échelle, le débit, la latence moyenne, la réentrance et le comportement

temps-réel est appliquées au mécanisme RCU ainsi qu’à la synchronisation de tam-

pons. Ceci permet de s’assurer du respect des propriétés pour chaque composant.
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Cette expérimentation utilise deux approches : les bancs d’essai, pour les mesures

de performances, et la vérification formelle par model-checking, pour procéder à la

vérification des propriétés de réentrance et de comportement temps-réel.

Les bancs d’essais réalisés visent à mesurer l’impact sur la mise à l’échelle, le débit

et la latence moyenne du système d’exploitation.

Un premier banc d’essai mesure la différence de débit d’une charge de travail

offrant initialement de bonnes caractéristiques de mise à l’échelle avec et sans traçage.

Les résultats obtenus sont que le débit augmente de manière linéaire avec et sans

traçage de 1 à 8 nœuds, ce qui démontre la préservation de la caractéristique de mise

à l’échelle de l’ensemble des mécanismes utilisés par le traceur. Des bancs d’essais

spécialisés ont également permis de vérifier la mise à l’échelle linéaire des primitives

de synchronisation en lecture RCU sur des configurations variant de 1 à 64 nœuds.

Un deuxième ensemble de bancs d’essais vise à déterminer l’impact sur le débit

pouvant être soutenu par le système d’exploitation. L’exécution de charges de travail

réseau, disque et de calcul mesurant le débit du système d’exploitation ou le temps

requis pour effectuer une même tâche permet de caractériser ce débit. La compara-

ison des mesures avec et sans traçage permet de connâıtre l’impact du traceur sur

ce débit. Dans des conditions d’exécution typique à haute fréquence d’événements,

le ralentissement du débit système est, au plus, de 6%. Dans des cas extrêmes, le

ralentissement peut atteindre 35%.

Une troisième série de bancs d’essais a pour but de mesurer l’impact du traçage

d’un événement sur la latence moyenne du système d’exploitation. Cette série de

bancs d’essais se subdivise en deux sous-parties : l’étude de la latence liée au traceur

lorsque celui-ci est présent en antémémoire, ainsi que l’étude comparative de latence

en fonctionnement normal avec une charge de travail en bruit de fond. Ceci a pour

objectif de tenir compte des effets de cache dans l’analyse de l’impact en latence. Sur

une architecture Intel Xeon doté d’une fréquence d’horloge de 2.0 GHz, on obtient

comme résultats que le traceur a un impact sur la latence de 119 ns par événement

lorsque le traceur est présent en antémémoire et de 333 ns par événement pour tracer

une charge de travail standard.

Le second plan d’expérimentation est la vérification formelle d’une modélisation

des algorithmes RCU et de synchronisation des tampons LTTng. Ce volet a pour objectif

la vérification du bon fonctionnement de ces algorithmes (absence de corruption) ainsi

que la vérification du progrès (absence de famine).
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L’impact d’algorithmes sur le comportement temp-réel peut se classer selon qu’ils

soient bloquants ou non-bloquants. Dans la classe des algorithmes non-bloquants, on

retrouve, en ordre croissant de garanties temps-réel, les algorithmes sans obstruction,

sans verrou et sans attente. Les catégories d’intérêt dans notre cas sont les algorithmes

sans verrou et sans attente. Un algorithme sans verrou assure un progrès global du

système, alors qu’un algorithme sans attente assure le progrès de chaque processus

considéré dans le système.

La vérification de modèles de synchronisation de tampons LTTng impliquant plusieurs

écrivains, ainsi que la présence d’écrivains et de lecteurs, permet de confirmer que l’al-

gorithme de synchronisation de LTTng est sans attente pour les écrivains. C’est-à-dire

que ni un lecteur, ni un autre écrivain concurrent ne peut causer la famine d’un

écrivain. Cette propriété s’applique aux implantations noyau, puisqu’il est possible de

désactiver l’ordonnanceur. Il est également démontré que l’impossibilité de désactiver

l’ordonnanceur en espace usager élimine la garantie de type “sans attente”, rendant

une telle implantation seulement “sans verrou”, puisqu’il devient possible pour un

écrivain concurrent de causer la famine d’un autre écrivain.

La vérification d’un modèle adapté aux primitives de synchronisation RCU permet

de s’assurer qu’un lecteur RCU est également sans attente.

L’impact sur la réentrance du traceur est vérifié à l’aide des modèles d’exécution

de processus concurrents utilisés pour vérifier le comportement correct et l’absence

d’interblocage lors de l’exécution de paires de processus. Ceux-ci couvrent les cas

d’exécution de multiples interruptions entre deux étapes atomiques, ce qui permet

d’assurer l’absence d’interblocage dans tous les cas. Ces mêmes modèles sont utilisés

pour vérifier l’absence de corruption causée par des accès concurrents des tampons

en écriture et lecture.

Des modèles similaires sont utilisés pour vérifier les propriétés des mécanismes de

synchronisation RCU. Les résultats démontrent que tant RCU que le mécanisme de syn-

chronisation d’accès aux tampons de LTTng supportent la réentrance de gestionnaires

d’interruptions NMI.

Afin d’augmenter la précision du modèle RCU quant à la représentation des effets

d’accès mémoire et d’exécution faiblement ordonnés des architectures modernes, nous

avons créé deux modèles d’architectures : OoOmem et OoOisched. Ceci permet de

vérifier que les barrières mémoires ainsi que les barrières restreignant les optimisations

du compilateur sont adéquates en vérifiant toutes les traces possibles d’exécution
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respectant les contraintes exprimées dans le modèle.

Le déploiement et l’expérimentation sur les architectures Intel 32/64-bit, Pow-

erPC 32/64-bit, ARM, MIPS, Sparc64 ainsi que les contributions externes pour SH,

S/390 ainsi que S/390x permettent de confirmer la portabilité de LTTng. Les proto-

types de traçage rapide en espace usager et pour l’hyperviseur Xen que j’ai réalisés

démontrent également la portabilité et la réutilisabilité des algorithmes créés dans

des environnements d’exécution variés.

Puisque chacune des composantes satisfait les propriétés recherchées, que ce soit

en utilisant RCU pour la synchronisation ou bien le mécanisme de synchronisation

de tampons pour l’écriture, nous pouvons affirmer, par construction, que le traceur

respecte toutes les propriétés recherchées.

La satisfaction de ces propriétés ouvre des champs d’utilisations diversifiés. La

discussion qui suit fait le lien entre chacune des propriétés et les champs d’applica-

tions ciblés. Les propriétés de faible impact sur les performances (latence, débit et

mise à l’échelle linéaire) ciblent les serveurs commerciaux qui nécessitent une surveil-

lance constante du bon fonctionnement des systèmes en production utilisant Linux.

Ceci permet à des compagnies comme Google d’identifier plus aisément la cause de

problèmes de fonctionnement et de performance. Cependant, pour laisser un traceur

actif en tout temps sur ces serveurs opérationnels en production, il faut avoir un

impact minimal sur leurs performances. Des besoins similaires sont évoqués dans les

applications à contraintes de temps douces chez Autodesk, lequels utilisent actuelle-

ment LTTng. Ericsson collaborent pour rendre LTTng utilisable dans leurs systèmes de

télécommunication. Les développeurs de Siemens dépendent également, de leur côté,

de LTTng pour certains de leurs produits sous Linux.

Les garanties temps-réel permettent également au domaine des systèmes temps-

réel d’utiliser le traceur LTTng pour des fins de déverminage et d’analyse des systèmes

comportant des contraintes de temps. C’est ce que font actuellement les distributions

Linux de Wind River, Monta Vista et STLinux en intégrant LTTng comme outil de

traçage à leur distribution visant le marché temps-réel. Ils permettent ainsi à leurs

utilisateurs d’obtenir une information sur le comportement du système d’exploita-

tion similaire à ceux retrouvés dans les autres systèmes d’exploitation temps-réels

usuels. La portabilité du traceur LTTng permet son intégration dans la plate-forme de

développement Maemo pour les téléphones cellulaires et tablettes Internet de Nokia.

La réentrance accrue du traceur bénéficie à la communauté de développeurs Linux,
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leur permettant d’ajouter des points d’instrumentation sans se soucier de l’interaction

du traceur avec le site instrumenté. Ceci bénéficie également aux utilisateurs Linux,

les assurant que leur noyau ne cessera pas de fonctionner lors qu’ils activent le traceur.

Ceci leur permet d’avoir une infrastructure de traçage en laquelle ils peuvent avoir

confiance.

Toutes ces applications de LTTng démontrent qu’il remplit un besoin de traçage

noyau à faible impact dans plusieurs champs d’application de l’industrie. Une consé-

quence de cette recherche est donc d’améliorer les infrastructures de déverminage pour

les systèmes multi-cœurs, rendant disponible un outil qui permet de trouver les goulots

d’étranglement de performance. Ceci permet une accélération des applications en

trouvant toutes sortes d’utilisations inefficaces des ressources, ce qui aide à améliorer

le temps de réponse, la réponse temps-réel, le débit système ainsi que l’efficacité

énergétique des systèmes.

Cette recherche a eu des impacts autres que ceux directement reliés au traceur

LTTng. Les Local Atomic Operations, Kernel Markers et Tracepoints ont chacun con-

tribué à d’autres champs d’application et d’autres projets. Le traçage de l’espace

usager, bien que périphérique à la cible principale de cette recherche, a été un champs

dans lequel nous avons également innové. Au niveau de la contribution scientifique,

5 articles provenant d’auteurs externes ayant utilisé LTTng dans leur expérimentation

ont été répertoriés à ce jour. Dans ces articles, LTTng a été utilisé à des fins variées,

en permettant l’analyse de la consommation de puissance de pilotes, l’analyse des

habitudes des utilisateurs et l’analyse de la précision des sources de temps.

La principale réalisation de cette recherche est la création d’algorithmes de syn-

chronization novateurs rendant possible l’implantation du traceur LTTng pour le

système d’exploitation Linux. Ce traceur satisfait les propriétés de faible impact sur

la mise à l’échelle, le débit et la latence moyenne du système d’exploitation, d’impact

déterministe sur la réponse temps-réel, de portabilité vers des architectures variées

et un haut niveau de réentrance. Des bancs d’essais en performance et la vérification

formelle ont démontré que chaque composant du traceur satisfait ces propriétés. Ainsi,

le traceur LTTng répond à des requis auxquels ses prédécesseurs ne répondaient que

partiellement, ce qui rend possible le traçage du système d’exploitation Linux, dont

la flexibilité permet son utilisation dans un large spectre de champs d’application.

Il a été possible d’atteindre ces objectifs en procédant à un choix parcimonieux, à

l’élaboration et à l’implantation de mécanismes de synchronisation : RCU pour la syn-
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chronisation en lecture et le mécanisme de synchronisation de tampons de LTTng pour

l’écriture. Les algorithmes utilisés dans ces deux mécanismes garantissent une mise à

l’échelle linéaire et la non-attente, caractéristiques utiles pour le traçage de systèmes

multi-cœurs ainsi que pour assurer un comportement temps-réel déterministe et une

réentrance complète.

La réponse appropriée aux requis de traçage de l’industrie et de la communauté

du logiciel libre est démontrée par le fait que divers composants de traçages que nous

avons créé, les Tracepoints et Linux Kernel Markers, sont intégrés au noyau Linux

et que le traceur LTTng bénéficie d’une large communauté d’utilisateurs et contribu-

teurs, en particulier Google, IBM, Ericsson, Autodesk, Wind River, Fujitsu, Monta

Vista, STMicroelectronics, C2 Microsystems, Sony, Siemens, Nokia et Recherche et

développement pour la défense Canada.

En conclusion de cette recherche, nous pouvons affirmer que le traçage de charges

de travail importantes sur un système d’exploitation à usage général s’exécutant sur

des architectures multi-cœurs peut être accompli en n’utilisant qu’une fraction du

débit et en n’augmentant la latence du système que faiblement, tout en conservant

complètement la mise à l’échelle, la réponse temps-réel, la portabilité et la réentrance

du système d’exploitation. L’implantation réalisée permet une couverture d’instru-

mentation du noyau dans son ensemble, incluant les gestionnaires d’interruptions

non-masquables (NMIs).

L’analyse de traces du système dans son ensemble implique la collecte de traces

à partir tant du noyau que de l’espace usager. Suite aux résultats prometteurs des

prototypes de traçage usager réalisés, il est maintenant temps de stabiliser une telle

infrastructure afin de permettre un traçage usager d’un niveau utilisable en production

sous Linux.

Les charges de travail qui peuvent maintenant êtres tracées sur des systèmes en

production permet la collecte d’information menant à l’analyse et la résolution de

problèmes en comportement et en performance dans les systèmes complexes actuels.

It sera intéressant d’explorer les analyses rendues possibles par une modélisation du

système d’exploitation orientée par les données extraites par LTTng.

Vu son utilité dans le cadre de l’observation de systèmes, de l’identification de

goulots d’étranglement en performance et en déverminage, la décision d’activer un

traceur en tout temps sur des systèmes en production devient naturelle pour les

développeurs système si la pénalité en performance est assez faible. Cette recherche
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démontre clairement que l’impact du traceur LTTng, lorsqu’activé, est assez faible pour

permettre son utilisation sur des systèmes en production faisant face à des charges de

travail élevées, sans pour autant diminuer les performances de manière prohibitive.
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Chapter 1

Introduction

Growth in hardware and software complexity that industry of software develop-

ment must cope with now turns debugging and performance monitoring into increas-

ingly challenging tasks. The need for global system-wide problem diagnosis facilities

emerges, but their associated high performance impact is usually frowned upon. This

compromises their deployment on production systems, where processor time and in-

put/output bandwidth must be fully utilized by the workload.

This increase in complexity and size has been a steady trend in computers since

their appearance. At the hardware-level, multiprocessor systems become increas-

ingly large and interconnection buses become more complex. At the software-level,

operating system (OS), library, virtual machine and application layers contribute to

this complexity. As a result, the effective complexity that software developers have

to deal with, represented by the number of interactions between components, grows

even faster.

1.1 Theoretical Framework

Debugging and performance monitoring tools are needed to provide insight into

component interactions, to help diagnosing issues in those large complex systems.

Tracing provides insight into interactions within system components. This technique

can diagnose the most difficult performance problems and bugs in software develop-

ment. It can provide both high-level and detailed views of the operating system (OS)

as a whole and of each of its individual subsystems. It consists in collecting event

records associated with time stamps, allowing to reconstruct the trace (a sequence

of events) in the order events occurred. The major drawback of this technique is its

heavy use of computer resources. It provides detailed system activity information,

at the expense of system resources required to extract large amounts of data. As an

observer, the challenge for a tracer is to minimally alter the original system behavior,
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hence permitting its reproducibility when the observer is active. This technique is

therefore inherently limited by the portion of system resources required to perform

tracing. Using faster computers does not solve the problem: newer architectures will

be expected to execute workloads faster and will create new timing conditions by

allowing execution of larger workloads. As a result, faster hardware does not im-

prove tracer’s ability to trace workloads, because the workload grows to fully use

the available resources, mostly due to the evolution of application complexity. When

supplementary computational resources are available, they will be allocated to the

system’s primary purpose rather than tracing.

This research is conducted within the GNU/Linux open-source operating system,

which becomes increasingly popular in the industry. It is used on a wide variety of

computer systems, from small embedded devices to large multiprocessor servers. Sup-

porting a broad hardware diversity makes it subject to subtle compatibility breakages

with specific hardware combinations. In order to deal with the complexity of software

development, the operating system is the fruit of interaction of many individuals and

companies part of an active developer community. Due to the increasing complexity

of the operating system, the people who understand it globally are very rare. Even

kernel developers specialize in areas (e.g. memory management, thread scheduling,

block device layer, ...). Solving complex subsystem interaction problems therefore

becomes a hard problem not only for the Linux users, but also for its own developer

community.

This research addresses the need for system-wide problem diagnosis tools, grown

from the increased hardware and software complexity. It focuses on the Linux oper-

ating system, a candidate already heavily used by the industry and presenting the

complexity characteristics requiring such tools. The software development industry

currently lacks the appropriate tools to diagnose problems requiring system-wide ob-

servability of the system. Tracing fills this need due to some of its unique features.

It permits diagnosing performance problems and bugs introduced by the interactions

between execution layers and different subsystems. Furthermore, a post-processing

analysis approach, where all collected information is made available for a posteriori

analysis, is elected to permit diagnosing bugs occurring rarely, which are amongst the

hardest to identify.
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1.2 Problem

Tracing the Linux operating system brings many challenges, which define the

major problems inherent to tracing. These challenges are caused by the need for a

system observer that minimally impact the system behavior.

As an initial point, tracer CPU usage must be kept low, so the majority of the

CPU time can still be available for the traced workload. Also, exporting data outside

of its producing execution context involves consuming bandwidth at many levels:

various levels of caches, memory, and optionally disk and network input/output.

This bandwidth consumption must also be kept within fractions of the amount of

bandwidth used by the operating system traced.

Characteristics met by the operating system, such as support for real-time (in-

creasingly supported by Linux Preempt-RT tree) and scalability to large number of

processors (4096) must also be supported by a tracer aiming to meet the requirements

faced by this operating system.

At the processor level, reentrancy of tracer operations with respect with concur-

rent execution contexts is required to ensure coherent data is collected. Moreover,

data gathered from multiple processors must be synchronized to keep event ordering

information for a posteriori analysis.

Instrumented parts of the operating system are used as calling sites to execute

tracer code. This means that instrumentation coverage is directly limited by reen-

trancy of the tracer code. For example, instrumentation of kernel code executed from

non-maskable interrupt (NMI) context require the tracer to be reentrant with respect

to these interrupts.

Given that the kernel code executed, and thus the tracer usage, directly depends

on the type of workload, it makes sense to principally consider the tracer impact on

workloads representing various typical heavy system usage.

The problem studied in this work is the extraction of tracing data from an op-

erating system, which involves collecting data from the operating system execution

and streaming this information outside of the kernel. The aspects of the problem

making its study worthwhile are the impacts of tracing (workload disruption) and

the instrumentation coverage: which parts of the system can be instrumented.
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1.3 Hypothesis

The hypothesis serving as starting point for this research is that it is possible to

trace an operating system, which runs intensive workloads on large multiprocessor

machines, using a small fraction of the resources, allowing to instrument any kernel

and user-space code location and permitting to model the original workload behav-

ior. This involves using a fraction of the operating system throughput and adding

a constant small amount to its average latency, as well as preserving the following

properties: scalability, real-time response, portability and reentrancy.

1.4 Objectives

The purpose of this study is to create a low-overhead, highly-reentrant and scal-

able tracer for Linux, a widely used operating system. It must be able to handle

trace throughput generated by heavy workloads on multiprocessor systems. It must

preserve, or modify within a small proportion, the Linux kernel characteristics.

The research objectives are detailed as follow:

– meet the industry and open source community tracing requirements,

– create new algorithms to solve the problems identified in industry,

– implement a tracer for Linux, an existent mainstream operating system,

– develop each tracer component so the tracer meets properties of preserving

scalability and having a low-impact on the operating system throughput and

average latency,

– guarantee a deterministic impact of tracing on real-time response,

– provide high portability and reentrancy of tracer mechanisms.

1.5 Claim for Originality

The main scientific contribution of this research is the creation of original syn-

chronization algorithms suitable for tracing. The new algorithms created and the

application of these algorithms to tracing is detailed as follows:

– creation of a wait-free, linearly scalable, and NMI-safe kernel buffering scheme,

– creation of an RCU-based trace clock permitting to atomically update current

time information, which is larger than a word, atomically with respect to the
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reader execution contexts, thus offering a wait-free, linearly scalable and NMI-

safe time-source,

– design of a complete kernel tracer based on wait-free, linearly scalable and NMI-

safe algorithms,

– application of self-modifying code techniques to dynamically enable and disable

static instrumentation, with non-measurable overhead when disabled and low

overhead when enabled, allowing NMI context instrumentation (presented in

Section 8.3),

– improvements to the RCU (Read-Copy Update) synchronization mechanisms for

efficient execution in user-space context, specifically proposing:

1. using signal-handlers to execute memory barriers only when waiting for a

grace period, allowing fast read-side,

2. using TLS (Thread-Local Storage) to perform local RCU state access effi-

ciently for reader threads.

3. chaining TLS data within a doubly linked-list to create a reader thread

registry, allowing to detect quiescent state with O(1) thread registration

and unregistration,

– creation of a generic architecture model for formal verification of parallel algo-

rithms, modeling weakly-ordered memory accesses and instruction scheduling,

The careful design of synchronization primitives enables the creation of the LTTng

tracer and of its components.

1.6 Outline

The state of the art is presented in Chapter 2, which focuses on the high-level

aspects of tracing. The state of the art refers to each article’s state-of-the-art section

for in-depth per-subject literature review. Each contains a detailed review for its

specific topic.

The methodology organizing this research is presented in Chapter 3. It explains

how the tracing requirements were first identified by collaborating with the indus-

try. It presents the tracer architecture developed to fulfill these requirements. The

instrumentation requirements are then detailed, referring to Chapter 8 for the de-

tailed presentation of this work not part of the four main articles. It then depicts an
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overview of the four articles.

The core of this thesis consists in four articles. Synchronization primitive choices

for the kernel tracer are presented in the article “Synchronization for Fast and Reen-

trant Operating System Kernel Tracing” [1], in Chapters 4. This article is currently

re-submitted after revision to Software – Practice and Experience. The reviewers

recommended its publication, although acceptation depends on approval of modifica-

tions performed in the re-submitted version. The presentation of a lock-less buffering

scheme using the results of the first article follows in the article “Lockless Multi-

Core High-Throughput Buffering Scheme for Kernel Tracing” [2] in Chapter 5. It

is currently submitted to ACM Transactions on Computer Systems (TOCS). Then,

our implementations of the RCU (Read-Copy Update) synchronization mechanism for

user-space are presented in the article “User-Level Implementations of Read-Copy

Update” [3], in Chapter 6. This article is currently submitted to IEEE Transactions

on Parallel and Distributed Systems (TPDS). An architecture-level model for formal

parallel algorithm verification is presented in “Multi-Core Systems Modeling for For-

mal Verification of Parallel Algorithms” [4], in Chapter 7. This last article is also

currently submitted to IEEE TPDS.

Chapter 8 presents additional results and discusses impacts of this research which

are not presented in the four main articles. This includes conference publications,

contributions to open source projects and external work based on the research results.

Chapter 9 discusses the results obtained from a high-level perspective. It shows

links between the main results obtained in the individual articles.

Finally, the conclusion recall the progress realized, the principal research contri-

butions and ends by proposing future work leveraging this research.
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Chapter 2

State of the Art

This chapter first presents the major computer architecture aspects which impact

the current research. Aiming at portability to different architectures implies taking

into account multiprocessor system effects. Then, the main tracing systems avail-

able today will be classified in categories related to their target systems: parallel,

distributed or real-time systems.

The actual usage of these systems is less strictly compartmented. Parallel and dis-

tributed systems have been traditionally used for scientific and engineering purposes.

However, commercial uses have surpassed these fields in terms of market volume [5].

Real-time systems, on the other hand, have evolved somewhat separately from high-

performance systems, filling the embedded system market. This trend is however

changing, as these same tools become increasingly useful to observe high-throughput,

low-latency systems, which are now required for applications such as stock exchange

and search engines, which must deal with high volume of transactions having low-

latency requirements. This forms the fourth category: commercial servers.

2.1 Computer Architecture

At one point, there was a large dissimilarity between general-purpose hardware

and high-end multiprocessor computers. However, as commodity computers become

increasingly multi-core and multi-processor, the scalability concerns become perva-

sive.

2.1.1 Parallelism

Between 1990 and 2009, the parallelism level of general-purpose processors has in-

creased significantly. From 1990 to 2000, instruction-level parallelism (pipelined and

superscalar architectures [6]) increased the instruction execution throughput while

still allowing a sequential programming paradigm, by allowing instruction execution
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to complete in an order different from which they were issued as long as data depen-

dencies are met.

During this phase, the complexity of operating systems grew to allow multiple

tasks to share resources. Amongst them: the processor, memory, devices and shared

libraries [7].

Before 2000, multiprocessor systems were less common in general-purpose com-

puters. They were mostly used for servers and mainframes, which ran specialized

applications. Given the important market represented by these high-end comput-

ers, most operating systems were designed to support multiple processors. Then,

the 2000-2009 period showed an increasing availability of multiprocessor systems in

commodity hardware and an increasing use of such hardware in distributed systems,

principally due to commercial applications [5, 8, 9, 10].

Hence, in 2009, an application must be multiprocessor-aware to fully use the

computing power of today’s commodity hardware present in both general-purpose

computers and distributed systems. The same applies to newer multi-core embedded

systems such as the ARM11 MPCORE [11], which indicates that multiprocessing is

increasingly pervasive. However, this comes at the cost of additional complexity.

2.1.2 Memory Access

In recent years, we have also seen the gap between the available processing power

and memory bandwidth widen, the former evolving much faster than the latter, as

presented in [12].

Various architectural solutions have been deployed to deal with this kind of prob-

lem. The addition of an increasing number of cache layers being the primary method

to help data accesses keeping up with the processor speed. Level-1, level-2 and level-3

caches are now found in processors. They accelerate data access under the condition

that temporal and space locality is preserved. Given the increasing performance gap

filled by these caches, locality of reference becomes an increasingly important consid-

eration.

Increasing the number of cache levels is one way to deal with the ever increasing

number of processors trying to access the same memory. It performs well as long

as applications are providing good cache locality. An alternative solution to connect

multiple cores to shared memory is Non-Uniform Memory Access (NUMA). This type
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of architecture subdivides memory into regions closer to specific processors. Access

to local memory is faster, but the cost is that access to remote memory is slower

than machines with standard shared memory. Getting good performance on these

architectures requires to adapt the operating system and applications to allocate

data in memory regions close to the processor, and to take memory access locality in

consideration when performing thread migration between processors.

Hence, being able to identify inefficient memory access patterns becomes increas-

ingly important as memory access locality effect increases and memory layout becomes

intrinsically tied to thread scheduling.

Because current architectures allow reordering of memory accesses to increase

instruction-level parallelism, verification of parallel algorithms is required to ensure

proper execution on parallel systems. Memory models and formal verification meth-

ods are one way to achieve such verification. The background will be presented in the

state of the art of the article “Multi-Core Systems Modeling for Formal Verification

of Parallel Algorithms”, found in Chapter 7.

2.1.3 Software-Level Support for Multiprocessing

Some of the widely used multiprocessing libraries to develop applications include

the pthread library, part of the glibc, and OpenMP, now included in the gcc com-

piler. Outside of multiprocessing support added to intrinsically sequential languages

like C or Fortran by added libraries, SMP support becomes increasingly integrated in

languages like Java, where thread support is included in the language.

The K42 operating system is an experiment on highly-scalable OS, with built-

in tracing support. Its tracing features will be detailed in the state of the art of the

article “Lockless Multi-Core High-Throughput Buffering Scheme for Kernel Tracing”,

in Chapter 5.

KTAU is a kernel tracer for the Linux operating system developed for multi-

processor computers. It provides detailed per-process tracing information, but only

aggregated information for system-wide tracing. It will be detailed in the state of the

art of the same Chapter.
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2.2 Real-time

Increase of architecture-level complexity caused by addition of parallelism and

increased impact of memory access locality is a concern for real-time applications.

An application is considered as having real-time requirements when it needs a

computation to be performed in a deterministically known amount of time. The

throughput provided by the application, in this case, comes second to the worst-case

delay the computation can afford [13, 14].

There is a major problem in terms of real-time response caused by these archi-

tecture trends. While increasing the size of caches and the number of processors can

help increasing the computing throughput, the side-effect of this complexity increase

is that real-time response becomes harder to certify. It is affected by pipeline stalls, in-

teractions between processors, and the fact that memory access delay becomes harder

to predict.

Real-time requirements are usually classified under the banners “hard real-time”

and “soft real-time”. At one extreme, hard real-time applications simply can’t afford

to miss a deadline. This imposes strict requirements on verification and architecture

behavior, where throughput is likely to be sacrificed in favor of increased determinism.

At the other side of the spectrum, soft real-time applications also have real-time

requirements, and would thus consider a missed deadline as a bug in the sense that

it deteriorate service quality. Some of these applications could not afford to sacrifice

performance because high throughput, and potentially low average latency, are parts

of their requirements. Therefore, these applications will typically provide guarantees

in terms of number of deadlines missed per time-period [15].

There is currently an increasing amount of such soft real-time applications used

in the field. For instance, Autodesk is using a slightly customized Linux distribution

to run their audio and video acquisition and edition applications [16]. Soft real-time

and low-latency must however not be confused. For instance, the Google servers,

answering to web search requests, must provide a low average latency response-time

to their users in an effort to make their experience enjoyable. This is, in fact, slightly

different from soft real-time: one slow answer once in a while can be acceptable, but

their aim is to have very low average response time [17].

Some operating systems are specialized to meet hard real-time requirements [18].

This is the case of VxWorks and µC OS-II, for instance. These operating systems
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are meant to provide a deterministic response time. In the hard real-time systems

category, RTAI (Real-Time Application Interface) and Xenomai provide hard real-

time support for user-space applications. They collaborates with a Linux kernel,

but provide limited application interfaces to the real-time applications. The RT-

preempt Linux kernel is derived from the standard Linux kernel. It aims at providing

real-time guarantees to standard Linux applications. It modifies extensively locking

primitives, interrupt handling and thread scheduling. The aim of this kernel is to

provide real-time guarantees close to hard real-time, where missing a deadline is

inadmissible. This comes at the cost of a significant performance regression compared

to the standard mainline kernel, and is hence not yet suitable for high-throughput

soft real-time applications.

Real-time systems requirements being heavily tied to the execution time, trac-

ers can easily provide counter-examples showing where the system does not meet

deadlines along with the faulty execution trace. This category of tool is therefore

extremely useful for these systems.

Tracing tools are already widely used in the real-time field, such as the closed-

source Wind River Tornado, a tracing tool embedded in the VxWorks real-time op-

erating system.

Amongst the open-source tracers, the original Linux Trace Toolkit [19] is a tracer

for the Linux operating system which has been made available for embedded real-time

systems, including RTAI. The Ftrace Linux mainline kernel tracer evolved from the

IRQ latency tracer, part of the Linux RT (Real-Time) kernel tree before the latter

was integrated in the Linux mainline kernel. This tracer’s goal was specifically to

identify long latencies caused by interrupt disabling. The tracers for which source-

code availability allows their study are presented in the article “Lockless Multi-Core

High-Throughput Buffering Scheme for Kernel Tracing”, in Chapter 5.

2.3 Distributed Systems

The growing trend of distributed systems, predicted in [5], is confirmed by their

increasing use between 2000 and 2009 [9, 10], especially for large-scale indexing and

query workloads.

In the scientific and engineering fields, the MPI library allows to divide a task

across a group of computers using a standard message-passing programming interface
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to exchange data at synchronization points. The Sun Studio Performance Analyzer

and PIP [20] tracers instrument the MPI synchronization primitives and provide an

insight into the workload by monitoring the exchanges between the nodes.

Commercial distributed systems are however less likely to rely on a MPI-style com-

munication between the nodes. Algorithms like map-reduce [8], which reserve different

roles to various nodes, including redundancy, are better suited to a RPC (Remote Pro-

cedure Call) interface. As discussed in Chapter 8, tracing the data exchanges is only

part of the equation; knowing what is happening at the system-level on a per-node

basis is also required to identify the causes of performance degradations.

2.4 Commercial Servers

Linux distribution packaging companies such as Redhat aim to provide tools, to

help system administrators identifying performance issues on their servers running the

Redhat Enterprise distribution. SystemTAP, based on the Kprobes, Kernel Markers

and Tracepoint instrumentations, is Redhat’s response to this demand. Solaris, from

Sun, targets a similar market by enhancing their operating system with Dtrace, a

system-wide tracer.

The main characteristic of this use-case category is to have servers running various

services, which makes the task of pinpointing the source of performance slowdown

across the kernel, library and application layers difficult.

This category of tracer will be studied in greater depth in the state of the art

of Chapter 5, within the article “Lockless Multi-Core High-Throughput Buffering

Scheme for Kernel Tracing”.
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Chapter 3

Methodology

This chapter presents the methodology used to proceed towards fulfillment of all

research objectives, explaining the rationale for each research phase. Initially, inter-

action with industry partners (Autodesk, IBM Research, Google), the LTT, and Linux

open source communities made possible to collect information about their require-

ments, computer architectures and software environment.

In parallel with this interaction, initial prototypes of the LTTng tracer were devel-

oped. These enabled us to gather real-world feedback on the tracer implementation

and its usability. During this phase, initial contributions were made to the Linux

kernel in order to publicize my work through the open-source community. For in-

stance, extending the internal Linux kernel API with our synchronization primitives,

Local Atomic Operations, permitted us to contribute an infrastructure identified as

useful for the LTTng tracer very early in the development process. Being known in a

community circle to be an active contributor for many years accounts very positively

in the amount of help and feedback received in return.

Through its design and development, the LTTng tracing infrastructure has been

stress-tested with very demanding workloads, benchmarked to ensure the tracer im-

pact was within acceptable limits. It subsequently had its wait-free algorithms for-

mally verified using model-checking, both for correctness and starvation-free behavior.

Still in the early phases of development, I identified the need to decouple in-

strumentation from the tracer. The idea is that adding instrumentation to the Linux

kernel is a task better performed by contributors and experts of each individual kernel

subsystem. Consequently, I created the Kernel Markers and Tracepoints infrastruc-

tures to manage this instrumentation and help the addition of instrumentation to the

Linux kernel. These infrastructures are now integrated into the mainline Linux kernel

and used extensively by the kernel developers community.

A few user-space LTTng tracer prototypes have been developed as part of this

project. However, given the pace of kernel-side development, I decided to discontinue
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support for the user-space tracer to eliminate a maintainability burden. However,

this experience has been very useful in designing the kernel tracer in a way that

would allow the algorithms to be easily migrated to user-space. In 2009, Pierre-Marc

Fournier, research associate with the DORSAL research team at École Polytechnique

de Montréal, started a port of the LTTng kernel tracer to a user-space library, which

he called UST (User-Space Tracer). Its design benefits from the experience acquired

with the past LTTng user-space tracers, and most of the synchronization is reusing

the LTTng kernel buffering algorithms, the Markers and Tracepoints.

A key aspect of the LTTng design for scalability and low performance overhead has

been the use of RCU (Read-Copy Update) to synchronize trace-control data read-side

accesses. However, this mechanism did not exist in user-space. I ergo volunteered to

develop new algorithms enabling RCU usage within the more constrained user-space

context. This led to the implementation of a user-space RCU library which provides

similar services to the library present in the Linux kernel. With IBM’s approval to

release their contribution under the LGPL license, the resulting library has been made

widely available and already has active users and contributors.

A fine-grained model for formal verification of these complex algorithms was

needed to provide a high confidence level in the implementation. Hence, I under-

took the task of creating a model of modern weakly-ordered processors to ensure

algorithmic correctness and progress at the lowest level, although generic enough to

ensure portability of the algorithm implementations.

3.1 Interaction with the community

Nowadays, many companies are doing business peripheral to operating systems,

and thus need them, but do not earn money directly from selling operating systems.

Amongst them, Google, IBM, Intel, Fujitsu, Autodesk, Ericsson, Siemens, Nokia; all

these collaborate through the Linux open source community to create and maintain

the GNU/Linux operating system.

Reaching for feedback from industry partners and from the open source community

has improved my understanding of today’s computer system ecosystem. Establishing

contact with such enterprises and groups of developers was initiated early in our

research, with the objective to benefit as quickly as possible from the community

expertise and feedback. An important part of this collaboration-oriented research has
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been the interaction with the industry, as well as with the Linux and LTT communities.

3.1.1 Tracing in the Industry

The first phase of this research consists in meeting with industry partners, users

of tracing solutions, as well as participating in conferences. It enabled the identifi-

cation of tracing requirements from the industry. Internships and partnerships with

Autodesk, IBM Research, and Google, as well as meetings and discussions with Wind

River helped gather this information from experienced industry partners. The Mon-

treal Tracing Summits held in 2008 [21] and 2009 [22], as well as discussions on tracing

at the Kernel Summit 2008 [23] helped us gather further input from industry.

An important opportunity I had through my research is to do an internship at the

IBM T.J. Watson research center under the mentorship of Robert Wisniewski, one of

the K42 authors, an expert in highly-scalable systems and lock-less algorithms. I have

been exposed to different architectures, mainly PowerPC, and to Commercial Scale-

Out workloads, which ended up badly needing tracer tools to find problem culprits.

I contributed, during my presence at IBM Research, to the paper “Experiences Un-

derstanding Performance in a Commercial Scale-Out Environment” [10]. It outlines

the requirements for a system-wide tracer able to analyze cluster nodes.

Another rich learning experience was an internship at Google, Mountain View,

with the Platform Team, under the supervision of Martin J. Bligh. He is a very

active and well-known Linux kernel developer, with contributions to the Linux NUMA

support and to memory management. I have been allowed to learn about the Google

infrastructure and their requirements. We wrote a conference paper, “Linux Kernel

Debugging on Google-sized clusters” [24], presented at the Ottawa Linux Symposium

in 2008. I contributed various use-cases for which tracers have been useful at Autodesk

and IBM Research.

The LTTng project also had impact in the security field. I presented debugger

circumvention techniques at the Recon 2006 conference, and showed how the low-

impact LTTng kernel tracer can be used to study elusive pieces of software, such as

viruses. This resulted in a conference paper, “OS Tracing for Hardware, Driver and

Binary Reverse Engineering in Linux” [25], for which I am the principal author. It

is published in the CodeBreakers journal. This paper, originally part of the Recon

2006 conference proceedings [26], was later added to a standard journal issue.
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3.1.2 Tracing in the Open-Source Community

An initial version of LTTng was designed to meet the requirements from the in-

dustry and the open-source community. The LTTng prototypes were iteratively pro-

posed to the community, and revised to fit their requirements. Noticing, from early

benchmarks, that per-CPU atomic operations were a very promising synchronization

mechanism in terms of performance, I contributed a complete API to the Linux kernel,

called local atomic operations. This first contribution helped us learn how the com-

munity works, helped us publicize the LTTng project, and helped facilitate feedback

and exchange with the community through the rest of the project.

Implementing the tracer indicated a very high coupling between the Linux kernel

and its instrumentation. I thus created Linux Kernel Markers, which evolved into

Tracepoints, today integrated and used widely in the Linux kernel. This permitted

us to decouple kernel instrumentation from the tracer.

3.1.3 Authored publications

Initially, conference articles were presented to discuss early results with the Linux

community. The article presented in [27] describes the LTTng architecture in its early

development phase. The article [28] outlines work done to diminish instrumentation

overhead (Immediate Values) and to instrument the Xen hypervisor. This article was

followed by one presented at the Linux Foundation Collaboration Summit [29] which

discusses the difference between tracing requirements for kernel developers and Linux

end-users.

A second community, real-time users, has also been targeted. Conference articles

were presented at the Embedded Linux Conference in 2006 [30] and 2009 [31]. The

first one focused on a use-case of the LTTng tracer to identify long latencies caused by

interrupt disabling. The second article focused more on a developer-level audience,

showing what architecture-specific components are needed to port the LTTng tracer

to new architectures.

The paper presented at Recon 2006 [26], afterward presented in an issue of the

Code Breakers Journal [25], targets the computer security community. It presents how

the LTTng kernel tracer can be used to understand the behavior of hostile executables,

taking as an example a Linux virus.
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3.1.4 Co-authored publications

Industrial internships at IBM Research and Google resulted in publication of pa-

pers co-authored with the respective teams. Both papers discussed use-cases requir-

ing high-throughput tracing solutions. The paper published with IBM Research [10]

presents how a tracing solution can help understanding and debugging commer-

cial scale-out systems. On the other hand, the paper co-authored with the Google

team [24] is more specifically aimed at showing various tracing use-cases to the Linux

community. It gathers use-cases from experience at Google, IBM and Autodesk.

3.2 Tracer Architecture

This section presents the solution I propose to address the constraints imposed

by my research hypothesis. The proposed design aims at preserving the following

operating system’s aspects: scalability, portability, real-time response and, within

limits permitting workload reproducibility, low latency and throughput.

3.2.1 Overview

Pursuing the objective of allowing multiple analysis to be performed on a single

collected trace, enabling in-depth analysis of hard to reproduce bugs, we extract trace

data from the kernel.

In order to answer the various industry requirements, the architecture depicted in

Figure 3.1 is proposed. Grey rectangles represent major phases of tracing. Within

these rectangles, ellipses represent the tracing phases, linked with arrows showing the

trace data flow direction. Between the tracing and post-processing phases, a dotted

Input/Output arrow represents extraction of trace data through I/O mechanisms:

disk, network, serial port, etc.

The tracing phases are performed on the traced system, using the processor, mem-

ory bandwidth and I/O resources required to extract the data out of the kernel. Ini-

tially, instrumentation is inserted into the operating system kernel. When the kernel

executes and reaches an instrumentation site, it verifies if the tracing site is activated,

and calls the attached probes. These probes perform all synchronization required to

write events into the trace buffers.
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Writing to circular memory buffers without live trace data extraction is called

flight recorder tracing. This is one tracing mode available. The other mode consists in

extracting the trace data while tracing is active. This latter phase is named buffered

data extraction. Events are gathered in memory buffers to ensure that costly I/O

operations are not used by the probe execution. The I/O phase is performed by

specialized threads. It can be either done live while the trace is being recorded, or

after tracing activity is over. In the latter case, only the very last buffers written will

be available for analysis.

Probes

Instrumentation

Analysis

Merge−sort

Data extraction

Input/Output

Post−processing

Tracing
On−site

Off−site

Scalability to multi−cores

Deterministic real−time effect

Low−latency

Low−overhead

Portability

Cross−architecture
Scalability to large traces

Figure 3.1 Tracer architecture diagram

Extracting large amounts of data, albeit having a small impact on system perfor-

mances, involves applying very strict implementation constraints. We deal with this
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at the design-level by minimizing the amount of trace data extraction synchronization

required between processors and execution contexts. A zero-copy approach, involving

no trace data copy between memory locations through the tracing phases, ensures

efficient use of memory bandwidth.

Event reordering at post-processing is made possible by gathering a time-stamp

value from the traced processor, written by the probe at each event header. The time-

stamp is typically the value of a time-source synchronized across processors. When

provided by the architecture, a cycle count register synchronized across processors

can be used as time-source. This allows a posteriori reordering of events based on

their time-stamps.

The post-processing phase can be performed either in the same environment as

the traced kernel or on a completely different computer architecture. It may not

be assumed that the traced and post-processing machines are the same architecture.

Thus, trace data extracted must be readable by the post-processor. We propose self-

described binary traces, written by the traced kernel in its native binary format, to

extract compact trace data efficiently and portably.

3.2.2 Instrumentation

As a result from the tracing requirement study, we noticed that some work needed

to be done to allow kernel-wide instrumentation without hurting performance when

tracing is not active.

The Kprobes infrastructure, already available in the mainline Linux kernel, is a

hardware breakpoint-based instrumentation approach. It dynamically replaces each

kernel instruction to instrument with a breakpoint, which generates a trap each time

the instruction is executed. A tracing probe can then be executed by the trap han-

dler. However, due to the heavy performance impact of breakpoints, the inability

to extract local variables anywhere in a function due to compiler optimizations, and

the maintenance burden of keeping instrumentation separate from the kernel code, a

more elaborate solution was needed.

I present, in Chapter 8, the Linux Kernel Markers and Tracepoints infrastructure,

which I created to decouple kernel instrumentation from the tracer probes. The mark-

ers and tracepoints allow us to declare instrumentation statically at the source-code

level without affecting performance significantly and without adding the cost of a
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function call when instrumentation is disabled. Having extremely low-overhead when

instrumentation is dynamically disabled is crucially important to provide Linux dis-

tributions the incentive to ship instrumented programs to their customers. Markers

and tracepoints consist in a branch skipping a stack setup and function call when

instrumentation is dynamically disabled (dormant). These individual instrumenta-

tion sites can be enabled dynamically at runtime by dynamic code modification, and

only add low overhead when tracing. The typical overhead of a dormant marker

or tracepoint has been measured to be below 1 cycle [28] when cache-hot. Static

declaration of tracepoints helps manage this instrumentation within the Linux ker-

nel source-code. Given that the Linux kernel is a distributed collaborative project,

enabling each kernel subsystem instrumentation to be maintained by separate main-

tainers helps distributing the burden of managing kernel-wide instrumentation.

However, statically declaring an instrumentation site for dynamic activation typ-

ically incurs a non-zero performance overhead due to the test and branch required

to skip the instrumentation call. To overcome this limitation, I created the concept

of activating statically compiled code efficiently by dynamically modifying an imme-

diate operand within an instruction, which I called Immediate Values. With these

optimizations, we have been able to show the Linux kernel community that a static

instrumentation approach is viable and could have near-zero overhead when disabled.

The better performing prototypes realized within this infrastructure replace a stan-

dard load, test and branch by a static jump which skips over the instrumentation

unconditionally. Runtime code-patching allows us to either activate or deactivate

an unconditional jump to dynamically enable branches. This results in completely

unmeasurable performance impact for the Tracepoints and Kernel Markers. These

prototypes initiated an effort at Redhat to implement the required compiler support

for static jump patching. More details about these infrastructures are presented in

Chapter 8.

Once the static instrumentation problem is covered, allowing kernel developers to

add instrumentation to their own subsystems, we are allowed to turn our focus on

efficiently extracting the trace data outside of the kernel.
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3.2.3 Synchronization Primitives

During the initial phase of the LTTng implementation, I noticed that the number

of cycles required to execute synchronization instructions was much higher than for

standard instructions, at least on x86 and PowerPC. Because a kernel tracer has

reentrancy requirements from various execution contexts, protection is required in

order to collect coherent, non-corrupted, traces.

I identified the synchronization primitives needed for efficient tracing on some of

the most common architectures. In the first paper, presented in Chapter 4, I discuss

the reentrancy question: which concurrent execution contexts can write trace data

to a shared memory buffer. I propose a new clock management infrastructure using

appropriate locking for tracing and then benchmark each possible choice of synchro-

nization primitive suitable to deal with the identified concurrency. I subsequently

propose to use the identified set of synchronization primitives as key synchronization

components in a kernel tracer.

3.2.4 Buffering

Following the discovery of the elected synchronization primitives to perform reen-

trant and fast kernel tracing, I created the LTTng buffering scheme to meet the low-

overhead, low-latency, real-time, scalability, portability and reentrancy requirements

targeted by this research. The design rules I imposed on the algorithm development

were that no synchronization primitive impacting the overall traced system behavior

can be used, and that each loop depending on external conditions to complete should

be carefully verified for deadlocks and possible unexpected delays and starvation that

could be caused by the probe sharing a data structure with a lower-priority execution

context.

I verified these properties with benchmarks and formal verification to demonstrate

that the research objectives are met. It showed linear scalability when increasing the

number of cores, wait-free guarantees for the kernel implementation, cache-hot perfor-

mance overhead between 119–314 ns per probe execution on the x86 processor family,

and 1014 ns for ARMv7. The equations and algorithms, as well as the benchmarks,

are detailed in the second paper, presented in Chapter 5. Formal verification of the

algorithm correctness and wait-free guarantees is presented in Section 8.6 The latency

added by a LTTng probe, as presented in Section 8.4, has been measured to be in a
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95% confidence interval between 328 and 338 ns on an Intel Xeon.

3.2.5 Read-Copy Update

The Read-Copy Update synchronization mechanism makes RP (Relativistic Pro-

gramming) more accessible. This class of programming techniques targets shared-

memory multiprocessor architectures, achieving linear read-side scalability by tol-

erating that different processors see memory operations in different orders and by

tolerating concurrent accesses to a memory location. RCU provides very efficient and

wait-free read-side. It has been used extensively in the Linux kernel since its integra-

tion in 2002, and counts 2500 uses in the 2.6.30 kernel as of June 2009 [32].

However, although it has been made widely available in the Linux kernel, no

algorithm as efficient as the ones used for kernel RCU existed for user-space execution.

This execution context poses specific problems in terms of support for multi-threaded

execution, support for synchronization of library data and lack of direct access to

internal kernel API, hence limiting the control over the scheduler and interrupts.

Considering the pervasiveness of multi-core architectures in commodity hardware,

the need for highly efficient synchronization can be expected to grow. Consequently,

we can expect many applications to benefit from making RCU more widely available.

One of these is, as a matter of fact, the UST (User-Space Tracer) library. To fill

the need for low-overhead synchronization of UST, I thereafter created the Userspace

RCU library. This library aims at providing a very low-overhead and highly-scalable

read-side to the UST tracer, a dynamic shared object loaded with the applications.

Great care was taken not to require any application modifications when loading the

UST tracer. This requirement equally applied to the Userspace RCU library.

Paul E. McKenney, author of the kernel RCU and Distinguished Engineer at the

IBM Linux Technology Center, and I proceeded to benchmark various alternative

user-space RCU implementations on Intel and PowerPC computers, with respectively

8 and 64 cores, showing linear read-side scalability. These user-space experiments

contributed to Paul E. McKenney’s simplifications of the kernel-side preemptible RCU.

These kernel RCU synchronization primitives are used by the LTTng kernel tracer. I am

the main author of an article on “User-Level Implementations of Read-Copy Update”,

presented in Chapter 6. I led the implementation effort with the collaboration of Paul

E. McKenney. This resulted in the Userspace RCU library, of which I am the author
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and maintainer.

3.3 Experimentation

Various approaches are used to ensure that the implementation realized meets

the scalability, low-overhead, low-latency and deterministic real-time characteristics

expected. Benchmarks are used to quantify the tracing overhead in terms of fraction

of system resources used, scalability and latency impacts. It is also used to compare

the performance overhead to other existing tracing solutions. Correctness of the

synchronization primitives is ensured by stress-testing and formal verification.

3.3.1 Benchmarks

We demonstrate tracer properties using latency, throughput and scalability bench-

marks. Section 5.5 presents LTTng benchmarks on systems running various workloads.

To characterize the latency induced by the tracer probes, we demonstrate that the

cache-hot CPU-time overhead per probe executed ranges from 119 to 1014 ns, depend-

ing on the architecture. This is complemented by latency benchmarks in Section 8.4,

performed on the Intel Xeon, which shows that the 95% confidence interval of the

average tracer probe execution time on a workload more representative of normal

cache conditions is between 328 and 338 ns. This confirms that latency impact of the

tracer is low.

To measure the throughput impact of the LTTng tracer, we ran benchmarks mea-

suring network and disk traffic throughput. The overhead in terms of fraction of

system throughput used is typically below 3 % for flight recorder mode and 6 %

for trace data extraction to disk for event throughput of 0.8 million events per second,

which confirms that the typical tracer throughput overhead is low. Given that the

tracer is expected to be used in the field on production machines running industry-

level workloads, throughput stress-tests were performed to push the tracer to its lim-

its to measure upper-bounds to its capacity. Under the heaviest stress-tests, tracer

throughput overhead is 28 % for 10 million events per second gathered in flight

recorder mode. A 35 % stress-test impact has been measured for 2.5 million events

per second when writing events to disk. This confirms that, even on heavy workloads,

the tracer throughput overhead is only a fraction of the system throughput.
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We also performed a comparative study with existing tracing solutions. Sec-

tion 5.5.8 presents a comparison between LTTng and Dtrace. The results obtained

on an x86 architecture shows an acceleration factor of 6.42 to 1 in favor of LTTng,

which demonstrates that LTTng performs significantly better than the existing tracing

solutions.

In this same section, scalability of the LTTng tracer is studied by comparing the

throughput of an intrinsically parallel workload with various number of nodes, with

and without tracing. On a 8-core Intel Xeon, we observe that system linear through-

put scalability is conserved under tracing. This confirms that the LTTng tracer scales

linearly with the number of CPU.

Benchmarking is not suitable to study the impact of the tracer on system real-time

determinism. It is rather verified with a formal method, as presented in the following

section.

3.3.2 Formal Verification

Developing correct synchronization algorithms becomes an increasingly complex

task with all reordering freedom taken by some architectures. Hence, only resorting

to test does not permit to validate that these synchronization primitives will behave

as expected in every context. For instance, an incorrect RCU implementation with a

single grace-period phase could result in a sequence of events causing a grace-period

guarantee failure, as presented in Section 6.4.3.

Section 8.6 presents the formal verification performed on the LTTng wait-free

buffering algorithm. A model of the LTTng wait-free algorithm verified with the

Spin model-checker, enabled to identify an incorrectness in the original sub-buffer

full and empty equations, which led to design modifications leading to the equations

presented in Section 5.4.2. Formal verification allows to ensure algorithm correctness;

in other words, that no race condition nor data corruption can occur. It also ensures

that the algorithm is wait-free by performing progress verification.

The final paper, presented in Chapter 7, details a framework to model multi-core

architectures with weak instruction and memory ordering, enabling verification of

low-level synchronization algorithms such as RCU.

We will proceed to the detailed explanation of each of these research phases con-

tained within the articles presented in the next chapters.
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Chapter 4

Paper 1: Synchronization for Fast

and Reentrant Operating System

Kernel Tracing

4.1 Abstract

To effectively trace an operating system, a performance monitoring and debugging

infrastructure needs the ability to trace various execution contexts. These contexts

range from kernel running as a thread to NMI (Non-Maskable Interrupt) contexts.

Given that any part of the kernel infrastructure used by a kernel tracer could

lead to infinite recursion if traced, and because most kernel primitives require syn-

chronization unsuitable for some execution contexts, all interactions of the tracing

code with the existing kernel infrastructure must be considered in order to correctly

inter-operate with the existing operating system kernel.

This paper presents a new low overhead tracing mechanism and motivates the

choice of synchronization sequences suitable for operating system kernel tracing,

namely local atomic instructions as main buffer synchronization primitive and the

RCU (Read-Copy Update) mechanism to control tracing. It also proposes a wait-free

algorithm extending the time-base needed by the tracer to 64-bit on architectures

that lack hardware 64-bit time-base support.

4.2 Introduction

As computers are becoming increasingly multi-core, the need for debugging fa-

cilities that will help identify timing related problems, across execution layers and

between processes, is rapidly increasing [24, 33, 34]. Such facilities must allow infor-

mation gathering about problematic workloads without affecting the behavior being
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investigated in order to be useful for problem analysis purposes.

The variety of execution contexts reached during kernel execution complicates effi-

cient exportation of trace data out of the instrumented kernel. The general approach

used to deal with this level of concurrency is to either provide good protection against

other execution contexts, for instance by disabling interrupts, or to adopt a fast, but

limited mechanism by shrinking the instrumentation coverage (e.g. by disallowing

interrupt handler instrumentation). This trade-off often means that either perfor-

mance or instrumentation coverage is sacrificed. However, as this paper will show,

this trade-off is not required if the appropriate synchronization primitives are chosen.

We propose to extend the OS 1 kernel instrumentation coverage compared to other

existing tracers by dealing with the variety of kernel execution contexts. Our approach

is to consider reentrancy from NMI 2 execution context, which presents particular con-

straints regarding execution atomicity due to the inability to create critical sections

by disabling interrupts. In this article, we show that in a multiprocessor OS, the

combination of synchronized time-stamp counters, cheap single-CPU atomic opera-

tions and trace merging, provides an effective and efficient tracing mechanism which

supports tracing in NMI contexts.

Section 4.4 will first present the synchronization primitives used by the state-of-

the-art open source tracers. In Section 4.5, we outline the LTTng 3 design requirements

which aim at high scalability and minimal real-time response disruption.

Recursion between the tracer probe and the kernel will be discussed in Section 4.6,

where the reasons why a kernel tracer cannot call standard kernel primitives with-

out limiting the instrumentation coverage will be illustrated by concrete examples

in Sections 4.6.1 and 4.6.2. We then propose an algorithm that synchronizes data

structures to provide a 64-bit tracer clock on architectures that lack hardware 64-bit

time-base support in Section 4.6.3.

In Section 4.7 we show how to achieve both good performance and instrumentation

coverage by choosing primitives that provide the right reentrancy characteristics and

high performance. Overhead measurements comparing the RCU 4 [35] mechanism and

local atomic operations primitives to alternative synchronization methods will support

this proposal.

1. OS: Operating System
2. NMI: Non-Maskable Interrupt
3. LTTng: Linux Trace Toolkit Next Generation
4. RCU: Read-Copy Update.



27

This opens a wide perspective for the design of fully reentrant, wait-free, high-

performance buffering schemes.

4.3 Introduction to Tracing

This section introduces the background required to understand the tracing state

of the art. The tracer impact on real-time response is first discussed, followed by a

description of tracer concepts.

The real-time impact of algorithms can be categorized following the guarantees

they provide. The terms used to identify such guarantees evolved through time in

the literature [36, 37]. The terminology used in this article will follow [37]. The

strongest non-blocking guarantee is wait-free, which ensures each thread can always

make progress and is therefore never starved. A non-blocking lock-free algorithm only

ensures that the system as a whole always makes progress. This is made possible by

ensuring that at least one thread is progressing when concurrent access to a data

structure is performed. An obstruction-free algorithm offers an even weaker guaran-

tee than lock-free: it only guarantees progress of any thread executing in isolation,

meaning that all competing concurrent accesses may be aborted. Finally, a blocking

algorithm does not provide any of these guarantees.

This article specifically discusses operating system kernel tracers. A tracer consists

of a mechanism collecting an execution trace from a running system. A trace is a

sequence of event records, each identifying that the kernel executed a pre-identified

portion of its code.

Mapping between execution sites and events is made possible by instrumentation

of the kernel. Instrumentation can be either declared statically at the source-code

level or dynamically added to the running kernel. Statically declared instrumentation

can be enabled dynamically.

A tracer probe is the tracer component called when enabled instrumentation is

executed. This probe is responsible for fetching all the data to write in the event

record, namely an event identifier, a time-stamp and, optionally, an event-specific

payload. Time-stamps are monotonically increasing values representing the time-flow

on the system. They are typically derived from an external timer or from a TSC 5

register on the processor.

5. TSC: Time-Stamp Counter
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To amortize the impact of I/O 6 communication, event records are saved in memory

buffers. Their extraction through an I/O device is therefore delayed. To ensure

continuous availability of free buffer space, a ring buffer with at least two sub-buffers

can be used. One is used by tracer probes to write events while the other is extracted

through I/O devices.

4.4 State of the Art

This section reviews the synchronization primitives used in the state-of-the-art

open source tracers currently available, namely: the original LTT tracer [19], the wait-

free write-side tracing solution found in K42 [38, 39], a highly-scalable research oper-

ating system created by IBM, DTrace [33] from Sun’s OpenSolaris, SystemTAP [40]

from RedHat, providing scripting hooks for the Linux kernel built as external modules,

KTAU [41] from University of Oregon and Ftrace, started by Linux kernel maintainer

Ingo Molnar. The following study details the synchronisation mechanisms used in

each of these projects.

The original LTT (Linux Trace Toolkit) [19] project started back in 1999. Karim

Yaghmour, its author, aimed at creating a kernel tracer suitable for the Linux kernel

with a static instrumentation set targeting the most useful kernel execution sites. LTT

uses the architecture time-stamp counter register when available to interpolate the

time between the time-stamps taken at sub-buffer boundaries with do gettimeofday().

This leads to problems with NTP (Network Time Protocol) correction, where the

time-base at the sub-buffer boundaries could appear to go backward. Regarding

synchronization, the do gettimeofday() function uses a sequence counter locking on

the read-side for ensuring time-base data consistency, which can cause deadlocks if

NMI handlers were instrumented. One of the early buffering scheme used was based

on spin lock (busy-waiting lock) disabling interrupts for buffers shared between the

CPUs. Per-CPU buffers support, provided by RelayFS, uses interrupt disabling to

protect from interrupt handlers. Karim worked, in collaboration with Tom Zanussi

and Robert Wisniewski from IBM, on the integration of some lockless buffering ideas

from the K42 tracer into RelayFS.

K42 [38, 39] is a research operating system developed by IBM, mostly between

1999 and 2006. According to the authors, its code-base should be considered as a

6. I/O: Input/Output
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prototype. It focuses on large multi-processor machine scalability and therefore uses

data structures and operations local to each CPU as much as possible. It brings

some very interesting ideas for tracing synchronization, namely the use of atomic

operations to synchronize buffer space reservation. The tracing facility found in K42

is built into the kernel. It uses per-CPU buffers to log tracing data and limits the

consumption of data to user-space threads tied to the local CPU. This first design

constraint could be problematic in a production OS, because if the workload is not

equally shared amongst all CPUs, those with the most idle time will not be able

to collaborate with the busier CPUs to help them extract the trace streams to disk

or over the network. It uses a wait-free algorithm based on the CAS (compare-

and-swap) operation to manage space reservation from multiple concurrent writers.

It adds compiler optimisation restriction barriers to order instructions with respect

to the local instruction stream, but does not add memory barriers, since all data

accesses are local. Once the space reservation is performed, the data writes to the

buffer and the commit count increments are done out-of-order. A buffers produced

count and a buffers consumed count are updated to keep track of the buffers available

for consumption by the user-space thread. For time-base synchronization, K42 only

supports architectures with 64-bit time-stamp counters for the PowerPC and AMD64,

and assumes that those counters are synchronized across all CPUs. Therefore, a

simple register read is sufficient to provide the time-base at the tracing site, and no

synchronization is required after system boot.

The DTrace [33] tracer has first been made available in 2003, and formally released

as part of Sun’s Solaris 10 in 2005 under the CDDL 7 license. It aims at providing infor-

mation to users about their system’s behavior by executing scripts at the kernel level

when instrumentation sites are reached. It has since then been ported to FreeBSD

and Apple Mac OS X 10.5 Leopard. A port to the Linux kernel is under development,

but involves license issues between CDDL and GPL 8.

The DTrace tracer 9 disables interrupts around iteration on the probe array before

proceeding to their invocation. Therefore, the whole tracer site execution is protected

from interrupts coming on the local CPU. Trace control synchronization is based on

a RCU-like [35] mechanism. After trace control data modification, the updater thread

7. CDDL: Common Development and Distribution License.
8. GPL: General Public License.
9. Version reviewed: OpenSolaris 20090330.
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waits for a grace period before all previously executing tracing sites can be considered

to have completed their execution, thus reaching a quiescent state. This is performed

by executing a thread on every CPU which is only scheduled when the currently active

tracing sites have completed their execution. Disabling interrupts serves as a means

to mark the tracing site execution, which therefore permits detection of tracing sites

quiescent states.

DTrace also uses a per-thread flag, T DONTDTRACE, ensuring that critical ker-

nel code dealing with page mappings does not call the tracer. It does not seem,

however, to apply any thread flag to NMI handler execution. In OpenSolaris, NMIs

are primarly used to enter the kernel debugger, which is not allowed to run at the

same time as DTrace. Therefore, the following discussion applies to a situation where

the same algorithms and structures would be used in an operating system like Linux,

where NMIs can execute code contained in various subsystems, including the Opro-

file [42] profiler.

DTrace calls the dtrace gethrtime() primitive to read the time source. On the x86

architecture, this primitive uses a locking mechanism similar to the sequence lock in

Linux. A sequence lock is a type of lock which lets the reader retry the read operation

until the writer exits its critical section. The particularity of the sequence lock found

in DTrace is that if it spins twice waiting for the lock, it assumes that it is nested

over the write lock, so a time value previously copied by the time-base tick update

will be returned. This shadow value is protected by its own sequence lock. In the

x86 implementation, this leaves room for a 4-way deadlock on 2 CPUs involving the

NTP correction update routines, tsc tick() and two nesting dtrace gethrtime() calls in

interrupt handlers.

Although this deadlock should never cause harm due to specific and controlled use

of NMIs in OpenSolaris, porting this tracer to a different operating system or loading

specific drivers using NMIs could become a problem. Discussion with Bryan Cantrill,

author of DTrace, with Mike Shapiro and Adam Leventhal, led us to notice that an

appropriate NMI-safe implementation based on two sequence locks taken successively

from a single thread already exists in dtrace gethrestime(), but is not used in the

lower-level x86 primitive. It requires that only a single execution thread takes the two

sequence locks successively. Using it in the lower-level code would require modification

of the NTP adjustment code 10. This example taken from a widely distributed tracer

10. Based on review of the DTrace code-base, we recommend using a standard mutex to ensure
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shows that it is far from trivial to design tracing clock source synchronization properly,

especially for a flexible open source operating system like Linux.

Considering real-time guarantees, a sequence lock should be categorized as a block-

ing algorithm. If an updater thread is stopped in the middle of an update, no reader

thread can progress. Therefore, a sequence lock does not provide non-blocking guar-

antees. This means real-time behavior can be affected significantly by the execution

of DTrace.

The SystemTAP [40] project from Redhat, first made available in 2006, aims at

letting system administrators run scripts connected at specific kernel sites to gather

information and statistics about the system behavior and investigate problems at a

system-wide level. It aims at providing features similar to DTrace 11 in the Linux

operating system. Its first aim is not to export the whole trace information flow, but

rather to execute scripts which can either aggregate the information, perform filtering

on the data input or write data into buffers along with time-stamps. The focus is

therefore not to have a very high-performance capable data extraction mechanism,

given this is not their main target use-case. SystemTAP uses a heavy locking mecha-

nism at the probe site. It disables interrupts and takes a global spin lock 12 twice in

the write path. The first critical section surrounded by interrupt disabling and lock-

ing is used to manage the free buffer pool. The second critical section, similar to the

former but using a distinct lock, is needed to add the buffer ready for consumption

to a ready queue.

SystemTAP assumes it is called from Kprobes [43], a Linux kernel infrastructure

permitting connection of breakpoint-based probes at arbitrary addresses in the ker-

nel. Kprobes disables interrupts around handler execution. Therefore, SystemTAP

assumes interrupt disabling is done by the caller, which is not the case for static in-

strumentation mechanisms like the Linux Kernel Markers and Tracepoints. In those

cases, if events come nested over the tracing code, caused by recursion or coming from

NMIs, SystemTAP will consider this as an error condition and will silently discard the

event until the number of events discarded reaches a threshold. At that point, it

will stop tracing entirely. SystemTAP modules can use the gettimeofday() primitive

mutual exclusion around the two write sequence locks should allow to permit using the same locking
mechanism for both dtrace gethrestime() and dtrace gethrtime(), which would allow updates from
NTP and from the tsc tick() routine.
11. According to http://sourceware.org/systemtap/wiki/SystemtapDtraceComparison.
12. A spin lock is a type of busy-waiting lock in the Linux kernel.

http://sourceware.org/systemtap/wiki/SystemtapDtraceComparison
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exported by the Linux kernel as time source. It uses a sequence lock to ensure the

time-base coherency. This fails in a NMI context because it would cause a deadlock

if a probe in a NMI nests over a sequence writer lock. Therefore, SystemTAP’s inter-

nals disallows instrumentation of code reached from NMI context. It also depends on

interruptions being disabled by the lower-level instrumentation mechanism.

The KTAU (Kernel Tuning and Analysis Utilities) [41] project, available since 2006,

allows either the profiling or tracing the Linux kernel on a system-wide or per-process

basis. It allows detailed per-process collection of trace events to memory buffers, but

deals with kernel system-wide data collection by aggregating performance information

of the entire system. The motivation for using aggregation to deal with system-wide

data collection is that exporting the full information flow into tracing buffers would

consume too much system resources. Conversely, the hypothesis the LTTng approach

is trying to verify is that it is possible to trace a significant useful subset of operating

system’s execution in a detailed manner without prohibitive impact on the workload

behavior. Therefore, we have to consider if the KTAU process-centric tracing approach

would deal with system-wide tracing appropriately.

Some design decisions indicate that detailed process tracing is not meant to be

used for system-wide tracing. KTAU keeps buffers and data structures local to each

thread, which can lead to significant memory usage on workloads containing multiple

threads. Workloads consisting of many mostly inactive threads and few very active

threads risk overflowing the buffers if they are too small, or consuming a lot of memory

if all buffers are made larger. KTAU allows tweaking the size of specific thread’s buffers,

but it can be difficult to tune if the threads are short-lived. We can also notice that

the kernel idle loop, which includes swap activity, and all interrupts and bottom

halves nested over this idle loop, are not covered by the tracer, which silently drops

the events.

For synchronization, KTAU permits choosing at compilation time between IRQ or

bottom half (lower priority interrupts) disabling and uses a per-thread spin lock to

protect its data structures. The fact that the data can stay local to each thread en-

sures that no unnecessary cache-line bouncing between the CPUs will occur. Those

spin locks are used therefore mainly to synchronize the data producer with the con-

sumer. This protection mechanism is thus not intended to trace NMIs because the

handler could deadlock when taking a spin lock if it nests over code already holding

the lock.
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Regarding kernel reentrancy, KTAU uses vmalloc (kernel virtual memory) to allo-

cate the trace buffers. Given that the Linux kernel populates the TLB (Translation

Lookaside Buffer) entries of those pages lazily on x86, the tracing code will trigger

page faults the first time those pages are accessed. Therefore, the page fault handler

should be instrumented with great care. KTAU only supports x86 and PowerPC and

uses the time-stamp counter register as a time source, which does not require any

synchronization per se. On the performance impact side, allocation of tracing buffers

at each thread creation could be problematic on workloads consisting of many short-

lived threads, because thread creation is normally not expected to be slowed down

by multiple page allocations, since threads usually share the same memory pages.

Ftrace, a project started in 2009 by Ingo Molnar, grew from the IRQ tracer, which

traces long interrupt latencies, to incrementally integrate the wake up tracer, provid-

ing information about the scheduler activity, the function tracer, which instruments

the kernel function entry at low-cost and an actively augmented list of tracers. Its

goal is to provide system-wide, but subsystem-oriented tracing information primarily

useful to kernel developers. It uses the Tracepoint mechanism, which comes from

the LTTng project, as primary instrumentation mechanism.

Ftrace, in its current implementation, disables interrupts and takes per-buffer

(and thus per-CPU) spin locks. The advantage of taking a per-CPU spin lock over

a global spin lock is that it does not require to transfer the spin lock cache-line

between CPUs when the lock has to be taken, which improves the scalability when

the number of CPUs increases. Ftrace, as of its Linux 2.6.29 implementation, does

not handle NMIs gracefully. If instrumentation is added in a code path reached by

NMI context, a deadlock may occur due to the use of spin locks. Ftrace relies on

the scheduler clock for timekeeping, which does not provide any locking against non-

atomic jiffies 13 counter updates. Although this time source is statistically correct

for scheduler purposes, it can result in incorrect timing data when the tracer races

with the jiffies update. Dropping events coming from nested NMI handlers will be the

solution integrated in the 2.6.30 kernels. Improvement is expected in a near future

regarding tracing buffer ability to handle NMIs gracefully using a lock-free kernel-

specific buffering scheme submitted for U.S. and international patent in early 2009

13. The jiffies counter increments at each timer tick, at a frequency typically between 100 and
1000 Hz.
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by Steven Rostedt 14.

4.5 Linux Trace Toolkit Next Generation

The purpose of the study presented in this paper is to be used as a basis for

developing the LTTng kernel tracer. This tracer aims at tracing the Linux kernel

while providing these guarantees:

– Provide a wide instrumentation coverage.

– Provide probe reentrancy for all kernel execution contexts, including NMIs and

MCE (Machine Check Exception) handlers.

– Record very high-frequency kernel events.

– Impose small overhead to typical workloads.

– Scale to large multiprocessor systems.

– Change the system real-time response in a predictable way.

Earlier work presented an overview of the LTTng tracer design [27] and industry

use-case scenarios in the industry [24, 10, 30, 25]. That work presents an in-depth

analysis of synchronization primitives and new algorithms required to deal with some

widely used 32-bit architectures.

The LTTng tracer probe needs, as input, a clock source to provide timestamps,

trace control information to know if tracing is enabled or if filters must be applied,

and the input data identified by the instrumentation. The result of its execution is

to combine its inputs to generate an event written to a ring buffer.

In order to provide good scalability when the number of CPU increases, LTTng

uses per-CPU buffers and buffer management counters to eliminate cache misses and

false-sharing. This diminishes the impact of the tracer on the overall system perfor-

mance. Nevertheless, cross-CPU synchronization is still required when information is

exchanged from a producer to a consumer CPU.

This paper will justify LTTng’s use of the RCU mechanism to synchronize control

information read from the probe, local CAS and proper memory barriers to synchro-

nize ring buffer output and present a custom trace clock scheme used to deal with

architectures lacking a 64-bit hardware clock source.

14. As stated in the Ftrace presentation at the Linux Foundation Collaboration Summit 2009.
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4.6 Tracing Synchronization

In this section we describe the atomic primitives and RCU mechanisms used by

the LTTng [27, 44] tracer to deal with the constraints associated with synchronization

of data structures while running in any execution context, avoiding kernel recursion.

We then present an RCU-like trace clock infrastructure required to provide 64-bit

time-base on many 32-bit architectures. The associated performance impact of the

synchronization primitives will be studied thereafter, which will lead to the subsequent

benchmark section.

4.6.1 Atomic Primitives

This section presents synchronization considerations for kernel data read from the

tracing probe, followed by inner tracer synchronization for the control data structures

read using RCU and buffer space reservation performed with atomic operations.

Because any execution context, including NMIs, can execute the probe, any data

accessed from the probe must be consistent when it runs. Kernel data identified by the

instrumentation site is expected to be coherent when read by all execution contexts

associated with the given site. It is therefore the instrumentation site’s responsibility

to correctly synchronize with those kernel data structures.

Data read by the probe can be classified into two types. The first type contains

global and static shared variables read from kernel memory. The second type includes

data accessed locally by the processor, contained either in registers, on the thread

or interrupt stack, or in per-CPU data structures when preemption 15 is temporarily

disabled.

Synchronization of shared data structures is ensured by static instrumentation be-

cause the data input identification is located within the source code which carries the

correct locking semantic. Conversely, dynamic instrumentation offers no guarantee

that global or static variables read by the probe will be appropriately synchronized.

For instance, Kprobes [43] do not export specific data at a given instrumentation site.

Therefore, it does not guarantee locking other than what is being done in the kernel

15. User space preemption naturally occurs when the scheduler interrupts a thread executing in
user space context and replaces it by another runnable thread. At kernel-level, with fully-preemptible
Linux kernels (CONFIG PREEMPT=y), the scheduler can preempt threads running in kernel con-
text as well.



36

around the breakpoint instruction. Given that there are not necessarily any data de-

pendency between the instruction being instrumented and the data accessed within

the probe, subtle race conditions may occur if locking is not performed appropriately

within the probe.

Local data accessed by its owner execution context, however, do not have such

locking requirements because it is normally modified only by the local execution

context. The probe which accesses this data executes either in the same execution

context owning this data or in a trap generated by instructions within the owner

context. However, compiler optimizations do not guarantee to keep local variables

live at the probe execution site with Kprobes. Static instrumentation can make sure

that the compiler keeps the data accessed live at a specific instruction.

Information controlling tracing behavior is accessed directly from the probe, with-

out any consideration regarding the context in which it is executed. This information

includes the buffer location, produced and consumed data counters and a flag to spec-

ify if a specific set of buffers is active for tracing. This provides flexibility so users

can tune the tracer following their system’s workload.

LTTng uses the RCU mechanism to manage the trace-control data structure. This

synchronization mechanism provides very fast and scalable data structure read access

by keeping copies of the protected data structure when a modification is performed.

It gradually removes an outdated data structure by first replacing all pointers to it by

pointers to the new version. It keeps all data copies in place until a grace period has

passed, which identifies a read-side quiescent state and therefore permits reclamation

of the data structure. A RCU read-side is wait-free, but the write-side can block if

no more free memory is available. Moreover, the write-side may either block waiting

for a grace period to end, or queue memory reclamation as a RCU callback to execute

after the current grace period. In this latter case, reclamation is performed in batch

after the current grace period ends. It therefore provides very predictable read-side

real-time response. Given that the trace control data structure updates are rare,

this operation can afford to block. LTTng marks the read-side critical sections by

disabling preemption because this technique is self-contained (it does not use other

kernel primitives) and due to its low overhead. The LTTng trace-control write-side

waits for readers to complete execution to provide guarantees to the trace-control

caller. Therefore, when the operation start trace completes, the caller knows all

current and new tracer probes are seeing an active trace. The opposite applies when
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tracing stops.

The tracing information is organized as a RCU list of trace structures, and is only

read by the probe to control its behavior. Since the probe is executed with preemption

disabled, updates to this structure can be done on a copy of the original while the

two versions are presented to the probes when the list is updated: probes holding a

pointer to the old structure still use the old one, while the newly executing probes

use the new one. A quiescent state is reached when all processors have executed the

scheduler. It guarantees that all preemption-disabled sections holding a pointer to

the old structure finished their execution. It is thus safe, from that point, to free the

old data structure.

With the RCU mechanism, the write-side must use preemptible mutexes to exclude

other writers and has to wait for quiescent states. Luckily, such trace data structure

updates are rare (e.g. starting a trace session), so update performance is not an issue.

Because the RCU mechanism wait-free guarantees apply only for the read-side,

LTTng cannot leverage RCU primitives to deal with reentrancy coming from any execu-

tion context to synchronize memory buffer space reservation, which includes updating

a data structure. Primitives, allowing protection from concurrent execution contexts

performing buffer space reservation on the local CPU, need to execute atomically

with respect to interrupts and NMIs, which implies that atomic operations must be

used to perform atomic data accesses.

Given that the cross-CPU synchronization points are clearly identified and occur

only when sub-buffers can pass from a producer CPU to a consumer CPU at sub-

buffer boundaries, the performance impact of synchronization primitives required for

each event should be characterized to find out which set of primitives are adequate

to protect the tracer data structures from use in concurrent execution contexts.

On modern architectures such as Intel Pentium and above, AMD, PowerPC and

MIPS, using atomic instructions, synchronized to modify shared variables in a SMP

(Symmetric Multi-Processor) system, incurs a prohibitive performance degradation

due to the synchronized variant of the instructions used (for Intel and AMD) or

to the memory barriers which must be used on PowerPC, MIPS and modern ARM

processors. Given that several atomic operations are often required to perform the

equivalent synchronization of what would otherwise be done by disabling interrupts

a single time, the latter method is often preferred. The wait-free write-side tracing
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algorithm used in LTTng 16 needs a single CAS operation to update the write count

(amount of space reserved for writing) and an atomic increment to update the commit

count (amount of information written in a particular sub-buffer).

Given that the tracing operations happen, by design, only on per-CPU data, their

single-CPU atomic primitives can be safely used. This means Intel and AMD x86

do not need LOCK prefix to synchronize these atomic operations with concurrent

CPU access, while PowerPC, MIPS and modern ARM processors do not require

them to be surrounded by memory barriers to ensure correct memory order, since the

only order that matters is from the point of view of a single CPU. Therefore, those

lightweight primitives, faster than disabling interrupts on many architectures, can be

used. Section 4.7 will present benchmarks supporting these claims.

4.6.2 Recursion with the Operating System Kernel

The instrumentation coverage depends directly on the amount of interaction the

probe has with the rest of the kernel. In fact, the tracer code itself cannot be instru-

mented because it would lead to infinite probe recursion. The same applies to any

kernel function used by the probe 17.

In the Linux kernel, the x86 32 and 64-bit architectures rely on page faults to pop-

ulate the page table entries of the virtual memory mappings created with vmalloc()

or vmap(). Since the kernel modules are allocated in this area, any access to module

instructions and data might cause a minor kernel page fault. Care must therefore be

taken to call the vmalloc sync all() primitive which populates all the kernel virtual

address space reserved for virtual mappings with the correct page table entries be-

tween module load and use of this module at the tracing site. This ensures that no

recursive page fault will be triggered by the page fault handler instrumentation.

In the context of the probe, the most important limitation regarding operating

system recursion is the inability to wake up a process when the buffers are ready to

be read. Instrumenting thread wake-ups provides very useful information about the

inner scheduler behavior. However, instrumentation of this scheduler primitive forbids

using it in the tracer probe. This problem is solved by adding a periodic timer which

samples the buffer state and wakes up the consumers appropriately. Given that the

16. LTTng kernel tracing algorithm with wait-free write-side will be presented in a forthcoming
paper.
17. A particularly unobvious example is the page fault handler instrumentation.
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operating system already executes a periodic timer interrupt to perform scheduling

and manage its internal state, the performance impact of this approach is in the same

order of magnitude as adding a callback to the timer interrupt. The impact on low

power-consumption modes is kept small by ensuring that these per-processor polling

timers are delayed while the system is in these low-power modes. Therefore, polling

is only performed when the system is active, and thus generating trace data.

As a general guideline, the probe site only touches its own variables atomically, so

it requires no higher-level synchronization with the OS. On the OS side, any operation

done on those shared variables is also performed atomically. It results in an hermetic

interface between the probe and the kernel which makes sure the probe calls no OS

primitive.

Because preemption must be disabled around probe execution, primarily to allow

the RCU-based data structures reads, care must be taken not to use an instrumented

version of the preemption disabling macros. It can be done by using the untraced

implementation preempt disable notrace().

4.6.3 Timekeeping

Time-stamping must also be done by the probe. It therefore has to read a time-

base. In the Linux kernel, the standard gettimeofday() or other clock sources are

synchronized with a sequence lock (seqlock), which consists of a busy loop on the

read-side, waiting for writers to finish modifying the data structure and checking for a

sequence counter modification prior to and after reading the data structure. However,

this is problematic when NMIs need to execute the read-side, because nesting over the

write lock would result in a deadlock; the NMI would wait endlessly for the writer to

complete its modification, but would do so while being nested over the writer. Normal

use of this synchronization primitive requires interrupt disabling, which explains why

it is generally correct, except in this specific case. Another issue is that the sequence

lock is a blocking synchronization algorithm, because the updater threads have the

ability to inhibit reader progress for an arbitrarily long period of time. Therefore, the

CPU time-stamp register, when available, is used to read the time-base rather than

accessing any kernel infrastructure.

Some architectures provide a 64-bit time-base. This is the case for the cycle

counter read with rdtsc on x86 32 and 64-bit [45], the PowerPC time-base register [46]
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and the 64-bit MIPS [47]. A simple atomic register read permit reading a full 64-bit

time-base. However, architectures like the 32-bit MIPS and ARM OMAP3 [48] only

provide a 32-bit cycle counter. Other architecture which lack proper cycle counter

register support must read external timers. For instance, earlier ARM processors must

read the time-base from an external timer through memory mapped I/O. Memory-

mapped I/O timers usually overflow every 32-bit count or even more often, although

some exceptions, like the Intel HPET [49], permits reading a 64-bit value atomically in

some modes.

The number of bits used to encode time has a direct impact on the ability of the

time-base to accurately keep track of time during a trace session. A 64-bit time-base

is guaranteed not to overflow for 3 thousand years at 4 GHz, which should be enough

for any foreseeable use. However, at a 500 MHz frequency, typical for embedded

systems, 32-bit overflows occur every 8 seconds.

Tracing-specific approaches to deal with time-stamp overflow has been explored

in the past, all presenting their own limitations. The sequence lock inability to deal

with NMI context has been presented above, although one could imagine porting the

DTrace double-sequence lock implementation to address this problem. This approach

is however slower than the RCU read-side and implies using a blocking sequence lock,

which fails to provide good real-time guarantees.

Alternatively, an approach based on a posteriori analysis of the event sequence

presented in the buffers could permit detecting overflows, but this requires a guaran-

teed maximum time delta between two events, which could be hard to meet due to

its dependency on the workload and events traced. Low-power consumption systems

with deep sleep states are good examples of such workloads. Periodically writing a

resynchronization time-stamp read from a lower-frequency time-source would dimin-

ish the precision of time-stamps to the precision of the external time-source.

If, instead of writing such a resynchronization event periodically, it was written

in a header to the buffer containing the events, this would again either impose limits

on the slowest event flow expected, otherwise a buffer covering too long a time period

could contain undetectable 32-bit overflows. Also, given that the buffer is naturally

expected to present the events in an order in which time monotonically increases,

performing adjustments based on a different time-source at the buffer boundary can

make time go backward because the two clocks are not perfectly synchronized. One

clock going too fast could make the last buffer events overlap the time window of



41

the following buffer. Simply using a CAS instruction would not solve the issue, given

that the architectures we are dealing with only have a 32-bit cycle counter and are

typically limited to 32-bit atomic operations.

There is already an existing approach in the Linux kernel, created initially for the

ARM architecture, to extend a 32-bit counter to 63 bits. This infrastructure, named

cnt32 to 63, keeps a 32-bit (thus atomically updated) value in memory. Its lower

31 bits are used to represent the extended counter top 31 bits. A single bit is used

to detect overflow by keeping track of the low-order 32nd bit. Update is performed

atomically in the reader context when a 32-bit overflow is detected. Assuming the code

is run at least twice per low-order 32-bit overflow period, this algorithm detects the

32-bit overflows and updates the high-order 31-bit count accordingly. This approach

has the benefit of requiring a very small amount of memory data (only 32 bits) and

being fast: given the snapshot is updated on the reader-side as soon as the overflow

is detected, the branch verifying this condition only needs to be taken very rarely.

This approach, however, has some limitations: it only permits us to keep an amount

of data smaller than the architecture word size. Therefore, it is not extensible: it

would not be possible to return the full 64-bit, because the top bit must be cleared to

zero, and it could not support addition of NTP or CPU frequency scaling information.

This infrastructure assumes that the hardware time-source will always appear to go

forward. Therefore, with slightly buggy timers or if the execution or memory accesses

are not performed in order, this would cause time to jump forward a whole 32-bit

period if the time-source appears to slightly decrement at the same time an overflow

occurs. This could be fixed by reserving one more bit to also keep track of the low-

order 31st bit and require the code to be called 4 times per counter overflow period.

Those two bits could be used together to distinguish between overflow and underflow.

This would however be at the expense of yet another high-order information bit and

only permit returning a 62-bit time-base.

Therefore, a new mechanism would be welcome to generically extend these 32-

bit counters to 64-bit while still allowing a time-base read from NMI context. The

algorithm we created to solve this problem extends a counter containing an arbitrary

number of bits to 64 bits. The data structure used is a per-CPU array containing

two 64-bit counts. A pointer to either the first or the second array entry is updated

atomically, which permits to atomically read the odd counter while the even is being

updated and conversely (as shown in Figure 4.1). The reader atomically reads the
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Figure 4.1 Trace clock read (no 32nd bit overflow)

Figure 4.2 Trace clock read (32nd bit overflow)

Figure 4.3 Trace clock update (1, 3, 4) interrupted by a read (2)
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pointer to the current array parity and then reads the last 64-bit value updated by

the periodic timer. It then detects the possible overflows by comparing the current

value of the time source least significant bits with the low-order bits of the 64-bit

value. It returns the 64 bits corresponding to the current count, with high-order bits

incremented if a low-order bit overflow is detected (as shown in Figure 4.2).

The algorithm for synthetic clock read-side is shown in Figure 4.4. At line 1,

TC HW BITS is defined as the number of bits provided by the clock source, represented

by a call to hw clock read(). The main limitation on the minimum number of bits

required from the clock source is that it must be larger than the sum of timer inter-

rupt period and maximum interrupt latency. This ensures that a timer interrupt is

1 #define HW_BITMASK ((1ULL << TC_HW_BITS) - 1)

2 #define HW_LS(hw) ((hw) & HW_BITMASK)

3 #define SW_MS(sw) ((sw) & ~HW_BITMASK)

4

5 struct synthetic_tsc_struct {

6 u64 tsc[2];

7 unsigned int index;

8 };

9

10 static DEFINE_PER_CPU(struct synthetic_tsc_struct, synthetic_tsc);

11

12 static inline notrace u64 sw_tsc_read(u64 old_sw_tsc)

13 {

14 u64 hw_tsc, new_sw_tsc;

15

16 hw_tsc = (u64)hw_clock_read();

17 new_sw_tsc = SW_MS(old_sw_tsc) | hw_tsc;

18

19 if (unlikely(hw_tsc < HW_LS(old_sw_tsc)))

20 new_sw_tsc += 1ULL << TC_HW_BITS;

21

22 return new_sw_tsc;

23 }

24

25 u64 notrace trace_clock_read_synthetic_tsc(void)

26 {

27 struct synthetic_tsc_struct *cpu_synth;

28 unsigned int index;

29 u64 sw_tsc;

30

31 preempt_disable_notrace();

32 cpu_synth = &per_cpu(synthetic_tsc, smp_processor_id());

33 index = ACCESS_ONCE(cpu_synth->index);

34 sw_tsc = sw_tsc_read(cpu_synth->tsc[index]);

35 preempt_enable_notrace();

36

37 return sw_tsc;

38 }

Figure 4.4 Synthetic clock read-side
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executed at least once per counter overflow period. Lines 2–3 present the HW LS() and

HW MS() macros, to select the least and most significant bits of a counter, respectively

corresponding to the hardware clock source and the bits counting the clock-source

overflows. Lines 5–8 declare a structure containing two 64-bit tsc values and an index

to the current tsc value to read. Line 10 defines a per-CPU variable, synthetic tsc,

holding the current tsc value for each processor.

The inline function sw tsc read is detailed at lines 12–23. The notrace keyword

is a macro expanding to a gcc attribute indicating that the function must not be

traced, in the unlikely event gcc decides not to inline the function. It receives as

parameter the last 64-bit clock value saved in the data structure and returns the

current 64-bit clock value. The current source clock value is read at line 16. The

current 64-bit clock value is then derived from the old 64-bit clock most significant

bits and the source clock bits. If an overflow is detected by line 19, the 64-bit clock

value is incremented of the power of two value corresponding to the overflow at line 20.

Lines 25–37 show the execution context considerations taken around the execution

of the trace clock read. Lines 31 and 35 disable and re-enable preemption, therefore

inhibiting the scheduler during this execution phase. This ensures that no thread

migration occurs, therefore ensuring local access to per-CPU data. It also ensures

that the thread is not scheduled out for a long period of time between the moment

it reads the index, reads the clock source and accesses the array. Long preemption

between these operations could cause the current clock value to be more than a

clock-source overflow apart from the previously read last 64-bit clock value when the

thread resumes. To overcome this problem, the maximum duration for which this

code can be interrupted is bounded by the maximum interrupt handler execution

time, which must be an order of magnitude lower than the overflow period. Line 32

uses the per cpu inline, a primitive which gets a pointer to the CPU-local instance of

synthetic tsc. ACCESS ONCE() is used at line 33 to read the current index through

a volatile access, which informs the compiler to treat this as an access to a memory-

mapped hardware device, therefore not permitting re-fetching nor reading in multiple

segments. Line 34 invokes the sw tsc read() inline explained above, which returns

the current 64-bit clock value.

The update is performed periodically, at least once per overflow period, by a per-

CPU interrupt timer. It detects the low-order bits overflows and increments the upper

bits, and then flips the current array entry parity (as shown in Figure 4.3). Readers
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still use the previous 64-bit value while the update is done until the update completes

with the parity flip.

As pointed out earlier, the read-side must disable preemption to ensure that it

only holds a reference to the current array parity for a bounded amount of cycles,

much lower than the periodic timer period. This upper bound is provided by the

maximum number of cycles spent in this short code path increased by the worse

interrupt response time expected on the system. It is assumed that no interrupt

flood will hold the code path active for a whole timer period. If this assumption is

eventually proven to be wrong, disabling interrupts around the algorithm execution

could help not experiencing this type of problem, but delaying of timer interrupt

would still leave room for overflow miss.

The update-side algorithm is detailed in Figure 4.5. The function update syn-

thetic tsc() must be executed periodically on each processor. It is expected to be

executed in interrupt context (therefore with preemption already disabled) at least

once per overflow period. Line 6 gets a pointer to the CPU-local synthetic tsc.

Line 7 flips the current index back and forth between 0 and 1 at each invocation.

Lines 8–9 invoke sw tsc read() to read the current 64-bit TSC value, using the

last synthetic TSC value saved in the data structure by the previous update syn-

thetic tsc() execution. The current 64-bit TSC value is saved in the free array entry,

unused at that moment. Line 10 is a compiler barrier, ensuring that the index update

performed on line 11 is not reordered before line 8 by the compiler. This makes sure

concurrent interrupts and NMIs are never exposed to corrupted data.

If processors need to be kept in low-power mode to save energy, the per-processor

interrupt needed to update the current 64-bit synthetic TSC value can be disabled in

1 static void update_synthetic_tsc(void)

2 {

3 struct synthetic_tsc_struct *cpu_synth;

4 unsigned int new_index;

5

6 cpu_synth = &per_cpu(synthetic_tsc, smp_processor_id());

7 new_index = 1 - cpu_synth->index;

8 cpu_synth->tsc[new_index] =

9 sw_tsc_read(cpu_synth->tsc[cpu_synth->index]);

10 barrier();

11 cpu_synth->index = new_index;

12 }

Figure 4.5 Synthetic clock periodic update
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such low-power mode, replaced by a resynchronization on an external timer counter

upon return to normal processor operation.

The amount of data which can be placed in the per-CPU array is not limited by the

architecture size. This could therefore be extended to support time-base correction for

CPU frequency scaling and NTP correction. If the hardware time-source is expected

to appear to run slightly backward (due to hardware bugs or out-of-order execution),

the algorithm presented above could additionally check the 31st bit to differentiate

between overflow or underflow in order to support non-perfectly monotonic time-

sources and still keep the ability to return the full 64 bits.

Given that each read-side and write-side thread will complete in a bounded amount

of cycles without waiting, this time-base enhancement algorithm can be considered as

wait-free, which ensures that no thread starvation can be caused by this algorithm.

It must be understood, however, that this proposed algorithm does not replace

a proper 64-bit time-stamp counter implemented by hardware. Indeed, if a faulty

device holds the bus or if a driver disables interrupts for more than a cycle-counter

overflow period, it would lead to time-base inaccuracy due to miss of one (or more)

cycle-counter overflow. Making sure that this situation does not happen would imply

reading an external clock source in addition to the cycle counter, which does not meet

our efficiency constraints. Therefore, given that it is of utmost importance to be able

to rely on core debugging facilities like kernel tracers, it is highly recommended to

use hardware providing full 64-bit cycle counters. However, given that software must

often adapt to hardware limitations rather than the opposite, the algorithm proposed

should work correctly, unless some hardware or driver is doing something really bad

like holding the bus or disabling interrupts for a few seconds.

4.7 Benchmarks

This section will present the benchmarks used to choose the right synchronization

primitives for tracing, given their respective performance impact on many of the

mainstream architectures, namely Intel and AMD x86, PowerPC, ARM, Itanium and

SPARC. The goal of the present section is to show that it is possible to use local atomic

operations without adding prohibitive overhead relative to interrupt disabling. It will

be demonstrated that, on most architectures, it is even faster to use local atomic

operations than to disable interrupts.
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The benchmarks presented consist of 20,000 executions of the cache-hot synchro-

nization primitive. The overall execution time is determined by sampling the cycle

counter once before and once after the 20,000 executions. The average time per it-

eration is therefore obtained. Given that these synchronization primitives typically

bring only a single cache line from memory to the processor, we assume cache miss

cost to be almost the same for each synchronization primitives. We study their cache-

hot performance impact, rather than their cache-cold impact, because combination

of synchronization primitives will typically still only require a single cache line for

synchronization data.

A comparison between benchmarks realized only with synchronization primitives,

and with added operations within the synchronization is presented at Table 4.1. The

added operation consists of 10 word-sized reads and one word write. For each locking

primitive, the columns present the number of cycles required to execute only the syn-

chronization, and the synchronization with the added operation, respectively. The last

column presents the difference from the expected baseline, which is assume is caused

by pipeline effects. It shows that the simple operations account for a negligible num-

ber of cycles compared to the synchronization cost, and that costly synchronization

primitives such as synchronized CAS are made even slower by the added operations,

probably due to pipeline stalls caused by the serializing instruction. Therefore, the

following benchmarks only take into account the synchronization primitive execution

time.

The assembly listings for the following Intel Xeon benchmarks are presented in

Figures 4.6, 4.7, 4.8 and 4.9. The term speedup is used to represent the acceleration

of one synchronization primitive compared to another.

Let’s first focus on performance testing of the CAS operation. Table 4.2 presents

benchmarks comparing disabling interrupts to local CAS on various architectures.

The columns present, in this order, the architecture on which the test is done, the

speedup obtained (cost of disabling and enabling interrupts divided by the overhead

of a local CAS), the overhead, in cycles, of local CAS, synchronized CAS, enabling and

disabling interrupts. When comparing the synchronization done with local CAS to

disabling local interrupts alone, a speedup between 4.60 and 5.37 is reached on x86

architectures. On PowerPC, the speedup range is between 1.77 and 4.00. Newer

PowerPC generations seems to provide better interrupt disabling performance than

the older ones. Itanium, for both older single-core and newer dual-core 9050 processor,
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has a small speedup of 1.33. Conversely, UltraSPARC atomic CAS seems inefficient

compared to interrupt disabling, which makes the latter option about twice faster. As

we will discuss below, besides the performance considerations, all those architectures

allow NMIs to execute. Those are, by design, unprotected by interrupt disabling.

Therefore, unless the macroscopic impact of atomic operations becomes prohibitive,

the tracer robustness, and ability to instrument code executing in NMI context, favors

use of atomic operations.

Tables 4.3, 4.4 and 4.5 present the different synchronization schemes that could

be used at the tracing site. Table 4.3 shows the individual elementary operations

performed when taking a spin lock (busy-waiting loop) with interrupts disabled. For

each architecture, the overhead of spin locks, and interrupt disabling/enabling pairs

is shown, as well as the sum of these overhead. These numbers are a “best case”,

because they do not consider the non-scalability of this approach. Indeed, the spin

lock atomic variable must be shared between all CPUs, which leads to performance

degradation when the variable must be alternately owned by different CPU’s caches,

a phenomenon known as cache-line bouncing.

Table 4.4 presents the equivalent synchronization performed using a sequence

counter lock and a fully synchronized atomic operation. The Seqlock column presents

the number of cycles taken for a sequence counter lock. These locks are used in the

kernel time-keeping infrastructure to make sure reading the 64-bit jiffies is consistent

on 32-bit architectures and also to ensure the monotonic clock and the clock adjust-

ment are read consistently. The Sync. CAS column presents the number of cycles

taken to perform synchronized CAS operation. This operation is needed because pre-

emption is kept enabled, which allows migration. Therefore, given that the probe

could be preempted and migrated between the moment it reads the processor ID and

the moment it performs the atomic data access, concurrency between CPUs must be

addressed by a SMP-aware atomic operation. If preemption is left enabled, per-CPU

data would be accessed by the local CPU most of the time, so it would statistically

provide a good cache locality, but, in cases where a thread is migrated to a different

CPU between reading the pointer to the data structure and the write to the reserve

or commit counters, we could have concurrent writes in the same structure from two

processors. Therefore, the synchronized version of CAS and increment should be used

if preemption is left enabled. It is interesting to note that ARMv7 OMAP3 shows

a significant slowdown for the sequence lock. This is caused by the requirement for
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read barriers before and after the sequence number read due to lack of address [48] or

control dependency between the sequence lock and the data to access. ARMv7 does

not have weaker read-side only memory barriers and therefore requires two dmb (Data

Memory Barrier) instructions, which decreases performance significantly.

Table 4.5 presents a RCU approach to synchronization. It involves disabling pre-

emption around the read-side critical section, keeping a copy of the old data structures

upon update and making sure the write-side waits for a grace-period to pass before

the old data structure can be considered private and memory can be reclaimed. Dis-

abling preemption, in this scheme, also has an effect on the scheduler: it ensures

that the whole critical section is not preempted nor migrated to a different CPU,

which permits to use the faster local CAS. For each architecture, column 2 presents

the number of cycles taken to disable and re-enable preemption. Column 3 presents

the time taken for a local CAS.

Table 4.6 presents the overall speedup of each synchronization approach compared

to the baseline: Spin lock disabling interrupts. For each architecture, the baseline

speedup is presented in column 2, followed by the sequence lock and CAS speedup.

Finally, column 3 presents the preemption disabling and local CAS speedup.

If we would only care about the read-side, the sequence counter lock approach

is the fastest: it only takes 3-4 cycles on the x86 architecture family to read the

sequence counter and to compare it after the data structure read. This is faster than

disabling preemption, which takes 8-9 cycles on x86. Preemption disabling is the cost

of RCU read-side synchronization. Therefore, in preemptible kernels, a RCU read-side

could be slightly slower than a sequence lock. On non-preemptible kernels, however,

the performance cost of RCU falls down to zero and outperforms the sequence lock.

But the synchronization requirements we have also involve synchronizing concurrent

writes to data structures.

In our specific tracing case, in addition to read tracing control information, we also

have to synchronize for writing to buffers by using CAS to update the write counter and

by using an atomic increment to keep track of the number of bytes committed in each

sub-buffer. Choosing between a seqlock and RCU has a supplementary implication:

the seqlock outperforms RCU on preemptible kernels only because preemption is left

enabled. However, this implies that a fully synchronized CAS and atomic add must

be used to touch per-CPU data to prevent migration.

The speedup obtained by using the RCU approach rather than the sequence lock
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ranges between 1.2 and 2.53 depending on the architectures, as presented in Table 4.6.

This is why, overall, the RCU and local atomic operations solution is preferred over

the solution based on read-side sequence lock and synchronized atomic operations.

Moreover, in addition to execute faster, the RCU approach is reentrant with respect

to NMIs. The read sequence lock would deadlock if an NMI nests over the write lock.

4.8 Least Priviledged Execution Contexts

The discussion presented above focused on tracing the kernel execution contexts.

It it however important to keep in mind that different execution contexts, namely

user-space, have different constraints. The main distinction comes from the fact that

it is a bad practice to let user-space code modify data structures shared with the

kernel without going through a system call, because this would pose a security threat

and lead to potential privilege escalation.

If we were to port the tracing probe to perform user-space tracing, the trade-off

would differ. The main downside of the RCU approach, for both the scheduler-based

and preemptible versions, is that it requires the writer to wait for reader quiescent

state before the old memory can be reclaimed. This could be a problem when ex-

porting data from kernel-space to user-space, (e.g. time-keeping data structures)

where the write-side is the kernel and the reader is user-space. When synchronizing

between different privilege levels (kernel vs user-space), the highest privilege level

must never wait or synchronize on the least-privileged execution context, otherwise

resource exhaustion could be triggered by the lower privilege context.

4.9 Conclusion

As this paper has demonstrated, the current state of the art in tracing involves

either instrumentation coverage limitations, synchronization flaws or limitation of the

architectures supported to those which have synchronized 64-bit time-stamp counters.

A set of synchronization primitives has been proposed which fulfill the instrumen-

tation coverage requirements of kernel tracing, adding code executed in NMI handler

context, which was not properly handled by state-of-the-art tracers. Those primitives

are the local CAS instruction and the RCU mechanism along with preemption disabling

around the tracing code execution.
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A wait-free algorithm, to extend a time-base providing less than 64-bit (which

overflows periodically during the trace) to a full 64-bit counter by software, has been

detailed. It should help tracers implement time-bases without the flaws caused by

incorrect use of the sequence lock and improving the real-time guarantees compared

to the sequence lock.

Finally, benchmarks have demonstrated that, on almost all architectures (except

SPARC), using local CAS for synchronization rather than disabling interrupts is ac-

tually faster. It shows that using atomic primitives over interrupt disabling allows to

grow the instrumentation coverage, including code executed from NMI handler con-

text, without sacrificing performance.

This will open the door to the design of fully reentrant, wait-free, high-performance

buffering schemes and to speedups in kernel primitives currently using interrupt dis-

abling to protect their execution fast path, such as the memory allocator.
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Table 4.1 Benchmark comparison between locking primitives and added inner oper-
ations, on Intel Xeon E5405

Locking primitive Sync. only Sync. and operations Pipeline effect
(cycles) (cycles) (cycles)

Baseline (no locking) 1 60 0
Local CAS 8 60 -7
Sync. CAS 24 94 11
IRQ save/restore 39 97 -1
Spin lock/unlock 46 99 -6
seqlock 3 60 -2
Preemption disable/enable 12 60 -11

Synchronized CAS:

110: 48 89 c8 mov %rcx,%rax

113: f0 0f b1 0d 00 00 00 lock cmpxchg %ecx,0x0(%rip)

11a: 00

11b: ff c2 inc %edx

11d: 81 fa 20 4e 00 00 cmp $0x4e20,%edx

123: 75 eb jne 110

Local CAS:

1e8: 48 89 c8 mov %rcx,%rax

1eb: 0f b1 0d 00 00 00 00 cmpxchg %ecx,0x0(%rip)

1f2: ff c2 inc %edx

1f4: 81 fa 20 4e 00 00 cmp $0x4e20,%edx

1fa: 75 ec jne 1e8

Figure 4.6 Assembly listings for Intel Xeon benchmarks (CAS loop content)
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Interrupt restore:

468: 56 push %rsi

469: 9d popfq

46a: ff c0 inc %eax

46c: 3d 20 4e 00 00 cmp $0x4e20,%eax

471: 75 f5 jne 468

Interrupt save (and disable):

530: 9c pushfq

531: 59 pop %rcx

532: fa cli

533: ff c0 inc %eax

535: 3d 20 4e 00 00 cmp $0x4e20,%eax

53a: 75 f4 jne 530

Interrupt save/restore:

600: 51 push %rcx

601: 9d popfq

602: 9c pushfq

603: 59 pop %rcx

604: fa cli

605: ff c0 inc %eax

607: 3d 20 4e 00 00 cmp $0x4e20,%eax

60c: 75 f2 jne 600

Figure 4.7 Assembly listings for Intel Xeon benchmarks (interrupt save/restore loop
content)

Table 4.2 Cycles taken to execute CAS compared to interrupt disabling

Architecture Speedup CAS Interrupts
(cli + sti) / local CAS local sync Enable (sti) Disable (cli)

Intel Pentium 4 5.24 25 81 70 61
AMD Athlon(tm)64 X2 4.60 6 24 12 11
Intel Core2 5.37 8 24 21 22
Intel Xeon E5405 5.25 8 24 20 22
PowerPC G5 4.00 1 2 3 1
PowerPC POWER6 1.77 9 17 14 2
ARMv7 OMAP3a 4.09 11 71 25 20
Itanium 2 1.33 3 3 2 2
UltraSPARC-IIIi b 0.64 0.394 0.394 0.094 0.159

a. Forced SMP configuration for test module. Missing barriers for SMP support added in these
tests and reported to ARM Linux maintainers.

b. In system bus clock cycles.
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Spin lock:

ffffffff814d6c00 <_spin_lock>:

ffffffff814d6c00: 65 48 8b 04 25 08 b5 mov %gs:0xb508,%rax

ffffffff814d6c07: 00 00

ffffffff814d6c09: ff 80 44 e0 ff ff incl -0x1fbc(%rax)

ffffffff814d6c0f: b8 00 01 00 00 mov $0x100,%eax

ffffffff814d6c14: f0 66 0f c1 07 lock xadd %ax,(%rdi)

ffffffff814d6c19: 38 e0 cmp %ah,%al

ffffffff814d6c1b: 74 06 je ffffffff814d6c23 <_spin_lock+0x23>

ffffffff814d6c1d: f3 90 pause

ffffffff814d6c1f: 8a 07 mov (%rdi),%al

ffffffff814d6c21: eb f6 jmp ffffffff814d6c19 <_spin_lock+0x19>

ffffffff814d6c23: c3 retq

Spin unlock:

spin_unlock:

ffffffff814d6f10 <_spin_unlock>:

ffffffff814d6f10: fe 07 incb (%rdi)

ffffffff814d6f12: 65 48 8b 04 25 08 b5 mov %gs:0xb508,%rax

ffffffff814d6f19: 00 00

ffffffff814d6f1b: ff 88 44 e0 ff ff decl -0x1fbc(%rax)

ffffffff814d6f21: f6 80 38 e0 ff ff 08 testb $0x8,-0x1fc8(%rax)

ffffffff814d6f28: 75 06 jne ffffffff814d6f30 <_spin_unlock+0x20>

ffffffff814d6f2a: f3 c3 repz retq

ffffffff814d6f2c: 0f 1f 40 00 nopl 0x0(%rax)

ffffffff814d6f30: e9 fb e1 ff ff jmpq ffffffff814d5130 <preempt_schedule>

ffffffff814d6f35: 66 66 2e 0f 1f 84 00 nopw %cs:0x0(%rax,%rax,1)

Benchmark loop for spin lock()/spin unlock():

140: 48 c7 c7 00 00 00 00 mov $0x0,%rdi

147: ff c3 inc %ebx

149: e8 00 00 00 00 callq ffffffff814d6c00 <_spin_lock>

14e: 48 c7 c7 00 00 00 00 mov $0x0,%rdi

155: e8 00 00 00 00 callq ffffffff814d6f10 <_spin_unlock>

15a: 81 fb 20 4e 00 00 cmp $0x4e20,%ebx

160: 75 de jne 140

Figure 4.8 Assembly listings for Intel Xeon benchmarks (spin lock loop content)

Table 4.3 Breakdown of cycles taken for spin lock disabling interrupts

Architecture Spin lock IRQ save/restore Total
(cycles) (cycles) (cycles)

Pentium 4 144 131 275
AMD Athlon(tm)64 X2 67 23 90
Intel Core2 57 43 100
Intel Xeon E5405 46 39 85
ARMv7 OMAP3a 132 45 177

a. Forced SMP configuration for test module.
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Sequence read lock:

330: f3 90 pause

332: 89 f2 mov %esi,%edx

334: 48 89 c8 mov %rcx,%rax

337: a8 01 test $0x1,%al

339: 75 f5 jne 330

33b: 39 15 00 00 00 00 cmp %edx,0x0(%rip)

341: 75 ef jne 332

343: ff c7 inc %edi

345: 81 ff 20 4e 00 00 cmp $0x4e20,%edi

34b: 75 ea jne 337

Preemption disabling/enabling:

3f8: ff 43 1c incl 0x1c(%rbx)

3fb: ff 4b 1c decl 0x1c(%rbx)

3fe: 41 f6 84 24 38 e0 ff testb $0x8,-0x1fc8(%r12)

405: ff 08

407: 0f 85 a4 00 00 00 jne 4b1

40d: ff c5 inc %ebp

40f: 81 fd 20 4e 00 00 cmp $0x4e20,%ebp

415: 75 e1 jne 3f8 <init_module+0x3e8>

[...]

4b1: e8 00 00 00 00 callq 4b6 <preempt_schedule>

4b6: e9 52 ff ff ff jmpq 40d

Figure 4.9 Assembly listings for Intel Xeon benchmarks (sequence lock and preemp-
tion disabling loop content)

Table 4.4 Breakdown of cycles taken for using a read seqlock and using a synchro-
nized CAS

Architecture Seqlock Sync. CAS Total
(cycles) (cycles) (cycles)

Pentium 4 4 81 85
AMD Athlon(tm)64 X2 4 24 28
Intel Core2 3 24 27
Intel Xeon E5405 3 24 27
ARMv7 OMAP3a 73 71 144

a. Forced SMP configuration for test module.
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Table 4.5 Breakdown of cycles taken for disabling preemption and using a local CAS

Architecture Preemption disable/enable Local CAS Total
(cycles) (cycles) (cycles)

Pentium 4 9 25 34
AMD Athlon(tm)64 X2 12 5 17
Intel Core2 12 8 20
Intel Xeon E5405 12 8 20
ARMv7 OMAP3a 10 11 21

a. Forced SMP configuration for test module.

Table 4.6 Speedup of tracing synchronization primitives compared to disabling in-
terrupts and spin lock

Architecture Spin lock Sequence lock Preempt disabled
disabling interrupts and CAS and local CAS

(speedup) (speedup) (speedup)

Pentium 4 1 3.2 8.1
AMD Athlon(tm)64 X2 1 3.2 5.3
Intel Core2 1 3.7 5.0
Intel Xeon E5405 1 3.1 4.3
ARMv7 OMAP3a 1 1.2 8.4

a. Forced SMP configuration for test module.
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Chapter 5

Paper 2: Lockless Multi-Core

High-Throughput Buffering

Scheme for Kernel Tracing

Abstract

Studying execution of concurrent real-time online systems, to identify far-reaching

and hard to reproduce latency and performance problems, requires a mechanism that

is able to cope with large amounts of information extracted from execution traces,

without disturbing the workload thereby causing the problematic behavior to become

unreproducible.

In order to meet this low-disturbance characteristic, we created the LTTng kernel

tracer. It is designed to make it possible, safe, and race-free to attach probes virtually

anywhere in the operating system, including sites executed in non-maskable interrupt

context.

In addition to being reentrant with respect to all kernel execution contexts, LTTng

provides good performance and scalability mainly due to its use of per-CPU data

structures, local atomic operations as main buffer synchronization primitive, and RCU

(Read-Copy Update) mechanism to control tracing.

Given that kernel infrastructure used by the tracer could lead to infinite recursion

if traced and typically require non-atomic synchronization, this paper proposes an

asynchronous mechanism to inform the kernel that a buffer is ready to be read. This

ensures that the tracing site does not require any kernel primitive and therefore

protects from infinite recursion.

This paper presents the core of LTTng’s buffering algorithms and benchmarks its

performance.
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5.1 Introduction

Performance monitoring of multiprocessor high-performance computers deployed

as production systems (e.g. Google platform), requires tools to report what is be-

ing executed on the system. This provides better understanding of complex multi-

threaded and multi-processes application interactions with the kernel.

Tracing the most important kernel events has been done for decades in the em-

bedded field to reveal useful information about program behavior and performance.

The main distinctive aspect of multiprocessor system tracing is the complexity added

by time-synchronization across cores. Additionally, tracing of interactions between

processes and the kernel generates a high volume of information.

Allowing wide instrumentation coverage of the kernel code can prove to be es-

pecially tricky, given the concurrency of multiple execution contexts and multiple

processors. In addition to being able to trace a large portion of the executable code,

another key element expected from a kernel tracer is to be low-overhead and not

disturb the normal system behavior. Ideally, a problematic workload should be re-

peatable both under normal conditions and under tracing, without suffering from the

observer effect caused by the tracer. The LTTng [27] tracer (available at: http://

www.lttng.org) has been developed with these two principal goals in mind: provide

good instrumentation coverage and minimize observer effect on the traced system.

A state of the art review is first presented, showing how the various tracer re-

quirements bring their respective design and core synchronization primitive choice

in different directions and how LTTng differs. The K42 tracer will be studied in de-

tail, given the significant contribution of this research operating system. This paper

will discuss some limitations present in the K42 lockless algorithm, which will bring

us to the need for a new buffer management model. The algorithms and equations

required to manage the buffers, ensuring complete atomicity of the probe, will then

be detailed. The scalability of the approach will also be discussed, explaining the

motivations behind the choice of per-CPU data structures to provide good processor

cache locality. Performance tests will show how the tracer performs under various

workloads at the macro-benchmark and micro-benchmark levels.

http://www.lttng.org
http://www.lttng.org
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5.2 State of the art

In this section, we will first present a review of the requirements from the target

LTTng user-base in terms of tracing. This is a summary of field work done to identify

those requirements from real-world Linux users. Then, we will present the state-of-

the-art open source tracers. For each of these, their target usage scenarios will be

presented along with the requirements imposed. Finally, we will study in detail the

tracer in K42, which is the closest to LTTng requirements, explaining where LTTng

brings new contributions.

Previous work published in 2007 at the Linux Symposium [24] and Europar [10]

presented the user-requirements for kernel tracing that are driving the LTTng effort.

They explain how tracing is expected to be used by Linux end-users, developers,

technical support providers and system administrators. The following list summarizes

this information and lists which Linux distributions integrate LTTng:

– Large online service companies such as Google need a tool to monitor their

production servers and to help them solve hard to reproduce problems. Google

have had success with such tracing approaches to fix rarely occuring disk de-

lay issues and virtual memory related issues. They need the tracer to have a

minimal performance footprint.

– IBM Research looked into the debugging of commercial scale-out applications,

which are being increasingly used to split large server workloads. They used

LTTng successfully to solve a distributed filesystem-related issue.

– Autodesk, in the development of their next-generation of Linux audio/video

edition applications, used LTTng extensively to solve soft real-time issues they

faced.

– Wind River includes LTTng in their Linux distribution so their clients, already

familiar with Wind River VxWorks tracing solutions, can benefit from the same

kind of features they have relied on for a long time.

– Montavista has integrated LTTng in their Carrier Grade Linux Edition 5.0 for

the same reasons.

– SuSE is currently integrating LTTng in their next SLES real-time distribution,

because their clients, asking for solutions supporting a kernel closer to real-time,

need such tools to debug their problems.

– A project between Ericsson, Defence R&D Canada, NSERC and various univer-
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sities is just starting. It aims at monitoring and debugging multi-core systems,

providing tools to automate system behavior analysis.

– Siemens has been using LTTng internally for quite some time now [50].

We will now look at the existing tracing solutions for which detailed design and

implementation documentation is publicly available. This study will focus on tracers

available under an open-source license, given that closed-source tracers do not provide

such detailed documentation. The requirements fulfilled by each tracer as well as their

design choices will be exposed. Areas in which LTTng requirements differ from these

tracers will be outlined.

DTrace [33], first made available in 2003 and formally released as part of Sun’s

Solaris 10 in 2005, aims at providing information to users about the way their op-

erating system and applications behave by executing scripts performing specialized

analysis. It also provides the infrastructure to collect the event trace into memory

buffers, but aims at moderate event production rates. It disables interrupts to protect

the tracer from concurrent execution contexts on the same processor and a sequence

lock to protect the clock source from concurrent modifications.

SystemTAP [40] provides scriptable probes which can be connected on top of Mark-

ers, Tracepoints or Kprobes [43]. It is designed to provide a safe language to express

the scripts to run at the instrumentation site, but does not aim at optimizing probe

performance for high data volume, since it was originally designed to gather informa-

tion exclusively from Kprobes breakpoints and therefore expects the user to carefully

filter out the unneeded information to diminish the probe effect. It disables interrupts

and takes a busy-spinning lock to synchronize concurrent tracing site execution. The

LKET project (Linux Kernel Event Tracer) re-used the SystemTAP infrastructure to

trace events, but reached limited performance results given the fact that it shared

much of SystemTAP’s heavy synchronization.

Ftrace, started in 2009 by Ingo Molnar, aims primarily at kernel tracing suited

for kernel developer’s needs. It primarily lets specialized trace analysis modules run

in kernel-space to generate either a trace or analysis output, available to the user in

text format. It also integrates binary buffer data extraction which aims at provid-

ing efficient data output. It is currently based on per-cpu busy-spinning locks and

interrupt disabling to protect the tracer against concurrent execution contexts. It is

currently evolving to a lockless buffering scheme. In comparison, the work on LTTng

presented in this paper started back in 2005.
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The K42 [38] project is a research operating system developed mostly between

1999 and 2006 by IBM Research. It targeted primarily large multiprocessor machines

with high scalability and performance requirements. It contained a built-in tracer

simply named “trace”, which was an element integrated to the kernel design per se.

The systems targeted by K42 and use of lockless buffering algorithms with atomic

operations are similar to LTTng.

From a design point of view, a major difference between this research-oriented

tracer and LTTng is that the latter aims at being deployed on multi-user Linux systems,

where security is a concern. Therefore, simply sharing a per-cpu buffer, available both

for reading and writing by the kernel and any user process, would not be acceptable on

production systems. Also, in terms of synchronization, K42’s tracer implementation

ties trace extraction user-space threads to the processor on which the information is

collected. Although this removes the need for synchronization, it also implies that

a relatively idle processor cannot contribute to the overall tracing effort when some

processors are busier. Regarding CPU hotplug support, which is present in Linux,

an approach where the only threads able to extract the buffer data would be tied to

the local processor would not allow trace extraction in the event a processor would

go offline. Adding support for cross-CPU data reader support would involve adding

the proper memory barriers to the tracer.

Then, more importantly for the focus of this paper, studying in depth the lockless

atomic buffering scheme found in K42 indicates the presence of a race condition where

data corruption is possible. It must be pointed out that, given the fact that the K42

tracer uses large buffers compared to the typical event size, this race is unlikely to

happen, but could become more frequent if the buffer size is made smaller or larger

events were written, which LTTng tracer’s flexibility permits.

The K42 tracer [39] divides the memory reserved for tracing a particular CPU into

buffers. This maps to the sub-buffer concept presented in the LTTng design. In

comparison, LTTng uses the “buffer” name to identify the set of sub-buffers which

are parts of the circular buffer. In the present discussion, the term “buffer” will

have the K42 semantic, but the rest of the paper will use the LTTng semantic. The

K42 scheme uses a lockless buffer-space management algorithm based on a reserve-

commit semantic. Space is first reserved atomically in the buffer, and then the data

write and commit are done out-of-order with respect to local interrupts. It uses a

buffersProduced count, which counts the number of buffers produced by the tracer, a
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buffersConsumed count, to keep track of the number of buffers read and a per-buffer

bufferCount, to keep track of the amount of information committed into each buffer.

In the K42 scheme, the buffersProduced count is incremented upon buffer space

reservation for an event crossing a buffer boundary. If other out-of-order writes are

causing the current and previous sub-buffer’s commit counts to be a modulo of buffer

size (because they would still be fully uncommitted), the user-space data consumption

thread can read non-committed (invalid) data because the buffersProduced would

make an uncommitted buffer appear as fully committed. This is a basic algorithmic

flaw that LTTng fixes by using a free-running per sub-buffer commit count and by using

a different buffer full criterion which depends on the difference between the write count

(global to the whole buffer) and its associated per-subbuffer commit count, as detailed

in Equation 5.1 in Section 5.4.2.

The formal verification performed by modeling the LTTng algorithms and using

the Spin model-checker increases the level of confidence that such corner-cases are

correctly handled.

5.3 Design of LTTng

Tracing an operating system kernel poses interesting problems related to the ob-

server effect. In fact, tracing performed at the software level requires modifying

the execution flow of the traced system and therefore modifies its behavior and per-

formance. When deciding what code will be executed when the instrumentation is

reached, each execution context concerned must be taken into account.

This section describes how LTTng is designed to deal with kernel tracing, satisfy-

ing the constraints associated with synchronization of data structures while running

in any execution context, avoiding kernel recursion and inducing a very small perfor-

mance impact. It details a complete buffering synchronization scheme.

This section starts with a high-level overview of the tracer design. It is followed

by a more detailed presentation of the Channel component, an highly-efficient data

transport pipe. Synchronization of trace Control data structures, allowing tracing

configuration, is then exposed. This leads us to the Data Flow presentation as seen

from the tracing probe perspective. Finally, the Atomic Buffering Scheme section de-

tails the core of LTTng concurrency management, which brings innovative algorithms

to deal with write concurrency in circular memory buffers.
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5.3.1 Components overview

Starting with a high-level perspective on the tracer design, Figure 5.1 presents the

component interactions across the boundary between kernel-space and user-space.

Kernel core and kernel modules are instrumented either statically at the source-

code level with the Linux Kernel Markers and Tracepoints or dynamically with

Kprobes. Each instrumentation site identifies kernel code and module code which

must be traced upon execution. Both static and dynamic instrumentation can be

activated at runtime on a per-site basis to individually enable each event type. An

event maps to a set of functionally equivalent instrumentation sites.

When an instrumented code site is executed, the LTTng probe is called if the

instrumentation site is activated. The probe reads the trace session status and writes

an event to the channels.

Trace sessions contains the tracing configuration data and pointers to multiple

channels. Although only one session is represented in Figure 5.1, there can be many

trace sessions concurrently active, each with its own trace configuration and its

own set of channels. Configuration data determines if the trace session is active or

not and which event filters should be applied.

From a high-level perspective, a channel can be seen as an information pipe with

specific characteristics configured at trace session creation time. Buffer size, tracing

mode (flight recorder or non-overwrite) and buffer flush period can be specified on a

per-channel basis. These options will be detailed in Section 5.3.2.

DebugFS is a virtual filesystem providing an interface to control kernel debugging

and export data from kernel-space to user-space. The trace session and channel data

structures are organised as DebugFS files to let lttctl and lttd interact with them.

The user-space program lttctl is a command-line interface interacting with the

DebugFS file system to control kernel tracing. It configures the trace session before

tracing starts and is responsible for starting and stopping trace sessions.

The user-space daemon lttd also interacts with DebugFS to extract the channels

to disk or network storage. This daemon is only responsible for data extraction; this

daemon has absolutely no direct interaction with trace sessions.
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Figure 5.1 Tracer components overview
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5.3.2 Channels

After the high-level tracer presentation, let’s focus on the Channel components.

They are presented in Figure 5.2.

A channel is a pipe between an information producer and consumer (producer and

writer as well as consumer and reader will be respectively used as synonyms through

this paper). It serves as a buffer to move data efficiently. It consists of one buffer

per CPU to ensure cache locality and eliminate false-sharing. Each buffer is made of

many sub-buffers where slots are reserved sequentially. Each sub-buffer is exported

by the lttd daemon to disk or to the network separately.

A slot is a sub-buffer region reserved for exclusive write access by a probe. This

space is reserved to write either a sub-buffer header or an event header and payload.

Figure 5.2 shows space being reserved. On CPU 0, space is reserved in sub-buffer 0

following event 0. In this buffer, the header and event 0 elements have been complelety

written to the buffer. The grey area represents slots for which associated commit

count increment has been done. Committing a reserved slot makes it available for

reading. On CPU n, a slot is reserved in sub-buffer 0 but is still uncommitted. It

is however followed by a committed event. This is possible due to the non serial

nature of event write and commit operations. This situation happens when execution

is interrupted between space reservation and commit count update and another event

must be written by the interrupt handler. Sub-buffer 1, belonging to CPU 0, shows

a fully committed sub-buffer ready for reading.

Events written in a reserved slot are made of a header and a variable-sized payload.

The header contains information containing the time stamp associated with the event

and the event type (an integer identifier). The event type information allows parsing

the payload and determining its size. The maximum slot size is bounded by the

sub-buffer size.

Channels can be configured in either of the two following tracing modes. Flight

recorder tracing is a mode where the oldest buffer data is overwritten when a buffer is

full. Conversely, non-overwrite tracing discards (and counts) events when a buffer is

full. Those discarded events are counted to evaluate tracing accuracy. These counters

are recorded in each sub-buffer header to allow identifying which trace region suffered

from event loss. The former mode is made to capture a snapshot of the system

preceding execution at a given point. The latter is made to collect the entire execution

trace over a period of time.
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Figure 5.2 Channel components

5.3.3 Control

This section presents interactions with the trace session data structure depicted

in Figure 5.1 along with the required synchronization.

Information controlling tracing includes, for instance, the channel location and a

flag to specify if a specific set of buffers is active for tracing. This provides flexibility

so users can tune the tracer following their system’s workload. They can determine

how much memory space must be reserved for buffering the tracing data. They can

also configure each channel in flight recorder or non-overwrite mode. Selection of

tracing behavior can be tuned on a per-channel basis. The channel identifier forms

an intrinsic event categorization.

Tracing control operations include creating a new trace session, starting or stop-

ping tracing, and freeing a trace session. Providing an external callback to be called

for per-trace filtering is also possible. Upon new trace session creation, parameters

must be set such as channel’s buffer size, number of sub-buffers per buffer, tracing

mode and if tracing is enabled for each information channel. This tracing control

information is contained in a list of active trace sessions.
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Tracing control is done by a kernel module, ltt-tracer, which updates the RCU

list of active trace sessions. It protects the update operation from concurrent writes

by holding a mutex. Two types of data structure modifications can be done: the data

element can be updated atomically, in which case it is safe to perform the modification

without copying the complete trace control data structure as long as the mutex is held.

Non-atomic updates must be done on a copy of the trace control structure, followed

by a replacement of the old copy in the list by two successive pointer changes in

this precise order: first setting the pointer to next element within the new copy and

then setting the pointer to the new copy in the previous element. Then it waits for

quiescent state, which allows memory reclamation of the old data structure. This

ensures no active data structure readers, the probes, still hold a reference to the old

structure when it is freed.

Modification of buffer data structures by the ltt-tracer kernel module is only done

upon new trace session creation and deletion. Once the trace is started, the module

won’t modify these structures until tracing is stopped. It makes sure only the data

producers and consumers will touch the buffer management structures.

In order to provide the ability to export tracing information as a live stream, one

must ensure a maximum latency between the moment the event is written to the

memory buffers and the moment it is ready to be read by the consumer. However,

because the information is only made available for reading after a sub-buffer has been

filled, a low event rate channel might never be ready for reading until the final buffer

flush is done when tracing is stopped.

To get around this problem, LTTng implements a per-CPU sub-buffer flush func-

tion which can be executed concurrently with tracing. It shares many similarities

with tracing an event. However, it won’t flush an empty sub-buffer because there is

no information to send and it does not reserve space in the buffer. The only supple-

mentary step required to stream the information is to call the buffer flush for each

channel periodically in a per-CPU timer interrupt.

5.3.4 Probe Data Flow

The tracing data flow from the probe perspective is illustrated in Figure 5.3. This

figure includes all data sources and sinks, including those which are not part of the

tracer per se, such as kernel data structures and hardware time stamps.
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Figure 5.3 Probe data flow
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A probe takes event data from registers, the stack, or from memory every time

the instrumented kernel execution site is reached. A time stamp is then associated

with this information to form an event, identified by an event ID. The tracing control

information is read to know which channel is concerned by the information. Finally,

the resulting event is serialized and written to a circular buffer to be later exported

outside of kernel-space. The channels offer a producer-consumer semantic.

Instrumentation can be inserted either statically, at the source-code level, or dy-

namically, using a breakpoint. The former allows building instrumentation into the

software and therefore identify key instrumentation sites, maintaining a stable API.

It can also restrain the compiler from optimizing away variables needed at the instru-

mented site. However, in order to benefit from flexible live instrumentation insertion,

without recompilation and reboot, it might be adequate to pay the performance cost

associated with a breakpoint, but one must accept that the local variables might be

optimized away and that the kernel debug information must be kept around.

Source-code level instrumentation, enabled at runtime, is currently provided by

Tracepoints [51] and Linux Kernel Markers [52], developed as part of the LTTng project

and merged into the mainline Linux kernel. Dynamic instrumentation, based on

breakpoints, is provided in the Linux kernel by Kprobes [43] for many architectures.

LTTng, SystemTAP and DTrace all use a combination of dynamic and static instru-

mentation. The details about the different instrumentation mechanisms are not,

however, the focus of this paper. The following section presents channel ring-buffer

synchronization.

5.4 Atomic Buffering Scheme

The atomic buffering scheme implemented in LTTng allows the probe to produce

data in circular buffers with a buffer-space reservation mechanism which ensures cor-

rect reentrancy with respect to asynchronous event sources. These include maskable

and non-maskable interrupts (NMIs). Preemption 1 is temporarily disabled around

the tracing site to make sure no thread migration to a different CPU can occur in the

middle of probe execution.

Section 5.4.1 first presents the data structures used to synchronize the buffering

1. With fully-preemptible Linux kernels (CONFIG PREEMPT=y), the scheduler can preempted
threads running in kernel context to run another thread.
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scheme. Then, algorithms performing interactions between producer and consumer

are discussed respectively in sections 5.4.2, 5.4.3, 5.4.3, 5.4.3 and 5.4.3.

5.4.1 Atomic data structures

On SMP (Symmetric Multiprocessing) systems, some instructions are designed

to update data structures in one single indivisible step. Those are called atomic

operations. To properly implement the semantic carried by these low-level primitives,

memory barriers are required on some architecture (this is the case for PowerPC and

ARMv7 for instance). For the x86 architecture family, these memory barriers are

implicit, but a special lock prefix is required before these instructions to synchronize

multiprocessor access. However, to diminish performance overhead of the tracer fast-

path, we remove memory barriers and use atomic operations only synchronized with

respect to the local processor due to their lower overhead than those synchronized

across cores. They are the only instructions allowed to modify the per-CPU data, to

ensure reentrancy with NMI context.

The main restriction that must be observed when using such operations is to

disable preemption around all access to these variables, to ensure threads are not

migrated from one core to another between the moment the reference is read and the

atomic access. This ensures no remote core accesses the variable with SMP-unsafe

operations.

The two atomic instructions required are the CAS (Compare-And-Swap) and a

simple atomic increment. Figure 5.4 shows the data structures being modified by

those local atomic operations. Each per-CPU buffer has a control structure which

contains the write count, the read count, and an array of commit counts and commit

seq counters 2. The counters commit count keep track of the amount of data committed

in a sub-buffer using a lightweight increment instruction. The commit seq counters are

updated with a concurrency-aware synchronization primitive each time a sub-buffer

is filled.

A local CAS is used on the write count to update the counter of reserved buffer

space. This operation ensures space reservation is done atomically with respect to

other execution contexts running on the same CPU. The atomic add instruction

is used to increment the per sub-buffer commit count, which identifies how much

2. The size of this array is the number of sub-buffers.
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Figure 5.4 Producer-consumer synchronization

information has actually been written in each sub-buffer.

The sub-buffer size and the number of sub-buffers within a buffer are limited

to powers of 2 for two reasons. First, using bitwise operations to access the sub-

buffer offset and sub-buffer index is faster than the modulo and division. The second

reason is more subtle: although the CAS operation could detect 32 or 64-bits overflows

and deal with them correctly before they happen by resetting to 0, the commit count

atomic add will eventually overflow the 32 or 64-bits counters, which adds an inherent

power of 2 modulo that would be problematic if the sub-buffer size would not be power

of 2.

On the reader side, the read count is updated using a standard SMP-aware CAS

operation. This is required because the reader thread can read sub-buffers from buffers

belonging to a remote CPU. It is designed to ensure that a traced workload executed

on a very busy CPU can be extracted by other CPUs which have more idle time.

Having the reader on a remote CPU requires SMP-aware CAS. This allows the writer

to push the reader position when the buffer is configured in flight recorder mode. The

performance cost of the SMP-aware operation is not critical because updating the read
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count is only done once a whole sub-buffer has been read by the consumer, or when

the writer needs to push the reader at sub-buffer switch, when a buffer is configured

in flight recorder mode. Concurrency between many reader threads is managed by

using a reference count on file open/release, which only lets a single process open the

file, and by requiring that the user-space application reads the sub-buffers from only

one execution thread at a time. Mutual exclusion of many reader threads is left to

the user-space caller, because it must encompass a sequence of multiple system calls.

Holding a kernel mutex is not allowed when returning to user-space.

5.4.2 Equations

This section presents equations determining buffer state. These are used by algo-

rithms presented in Section 5.4.3.

These equations extensively use modulo arithmetic to consider physical counter

overflows. On 64-bits architectures, equations are in modulo 264. On 32-bits archi-

tectures, they are modulo 232.

We first define the following basic operations. Let’s define

– |x| as length of x.

– a mod b as modulo operation (remainer of a
b
).

–
n

M
m
(x) as x bitwise AND 00 . . . 011 . . . 1

︸ ︷︷ ︸

n−m

00 . . . 0
︸ ︷︷ ︸

m

,

formally: (x mod 2n)− (x mod 2m).
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We define the following constants. Let

– |sbuf| be the size of a sub-buffer.

(power of 2)

– |buf| be the size of a buffer.

(power of 2)

– sbfbits = lg2(|sbuf|).

– bfbits = lg2(|buf|).

– nsbbits = bfbits− sbfbits.

– wbits be the architecture word size in bits.

(32 or 64 bits)

We have the following variables. Let

– wcnt be write counter mod 2wbits .

– rcnt be read counter mod 2wbits .

– wcommit be the commit counter commit seq mod 2wbits belonging to the sub-

buffer where wcnt is located.

– rcommit be the commit counter commit seq mod 2wbits belonging to the sub-

buffer where rcnt is located.

Less than one complete sub-buffer is available for writing when Equation 5.1 is

satisfied. It verifies that the difference between the number of sub-buffers produced

and the number of sub-buffers consumed in the ring buffer is greater or equal to the

number of sub-buffers per buffer. If this equation is satisfied at buffer switch, it means

the buffer is full.

wbits

M
sbfbits

(wcnt)−
wbits

M
sbfbits

(rcnt) ≥ |buf| (5.1)

Write counter and read counter masks are illustrated by Figure 5.5. These masks

are applied to wcnt and rcnt .

A buffer contains at least one sub-buffer ready to read when Equation 5.2 is

satisfied. The left side of this equation takes the number of buffers reserved so far,

masks out the current buffer offset and divides the result by the number of sub-buffers

per buffer. This division ensures the left side of the equation represents the number

of sub-buffers reserved. The right side of this equation takes the commit count to

which rcnt points and substracts |sbuf| from it. It is masked to clear the top bits,

which ensures both sides of the equation overflow at the same value. This is required
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Figure 5.5 Write and read counter masks

because rcnt reaches a 2wbits overflow sbfnb times more often than the per-subbuffer

rcommit counters. |sbuf| is substracted from rcommit because we need to know when

the commit seq is one whole sub-buffer ahead of the read count.

wbits

M
bfbits

(rcnt)

2nsbbits
=

wbits−nsbbits

M
0

(rcommit − |sbuf|) (5.2)

The sub-buffer corresponding to wcnt is in a fully committed state when Equa-

tion 5.3 is satisfied. Its negation is used to detect a situation where an amount of data

sufficient to overflow the buffer is written by concurrent execution contexts running

between a reserve-commit pair.

wbits

M
bfbits

(wcnt)

2nsbbits
=

wbits−nsbbits

M
0

(wcommit) (5.3)

Commit counter masks are illustrated by Figure 5.6. These masks are applied to

rcommit and wcommit .

The sub-buffer corresponding to rcnt is being written when Equation 5.4 is satis-

fied. It verifies that the number of sub-buffers produced and consumed are equal.

wbits

M
sbfbits

(wcnt) =
wbits

M
sbfbits

(rcnt) (5.4)
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Figure 5.6 Commit counter masks

5.4.3 Algorithms

Algorithms used to synchronize the producer and consumer are presented in this

section. It is followed by a presentation of the asynchronous buffer delivery algorithm.

Producer

This section presents the algorithms used by the information producer, the probe,

to synchronize its slot reservation within the channels.

The overall call-graph presented in this section can be summarized as follow.

When an event is to be written, space is reserved by calling ReserveSlot(), which

callsTryReserveSlot() in a loop until it succeeds. Then, PushReader(), Switch-

OldSubbuf(), SwitchNewSubbuf() andEndSwitchCurrent() (not expanded

in this paper for brevity) are executed out-of-order to deal with sub-buffer change.

After the event data is written to the slot, CommitSlot() is called to increment the

commit counter.

The write count and read count variables have the largest size accessible atomically

by the architecture, typically 32 or 64 bits. Since, by design, the sub-buffer size and

the number of sub-buffers within a buffer are powers of two, a LSB (Least Significant

Bit) mask can be used on those counters to extract the offset within the buffer.

The MSBs (Most Significant Bits) are used detecting the improbable occurrence of

a complete buffer wrap-around nested on top of the local CAS loop in flight recorder

mode. Such overflow, if undetected, could cause a timestamp to go backward in a
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buffer.

Such wrap-around could happen if many interrupts nest back-to-back on top of

a CAS loop. A worse-case scenario would be to have back-to-back nested interrupts

generating enough data to fill the buffer (typically 2 MiB in size) and bring the write

count back to the same offset in the buffer. The CAS loop uses the most significant

counter bits to detect this situation. On 32-bits architectures, it permits to detect

counter overflow up to 4 GiB worth of buffer data. On 64-bits architectures, it detects

up to 16.8 million TiB worth of data written while nested over a CAS loop execution.

Given that this amount of trace data would have to be generated by interrupt handlers

continuously interrupting the probe, we would consider an operating system facing

such an interrupt rate to be unusable. As an example of existing code with similar

assumptions, the Linux kernel sequence lock, used to synchronize the time-base, is

made of a sequence counter also subject to overflow.

Slot reservation, presented in TryReserveSlot() and ReserveSlot() is per-

formed as follow. From a high-level perspective, the producer depends on the read

count and write count difference to know if space is still available in the buffers. If

no space is available in non-overwrite mode, the event lost count is incremented and

the event is discarded. In flight recorder mode, the next sub-buffer is overwritten by

pushing the reader. Variables write count, read count and the commit seq array are

used to keep track of the respective position of the writer and the reader gracefully

with respect to counter overflow. Equations 5.1, 5.2, 5.3 and 5.4 are used to verify

the state of the buffer.

The write count is updated atomically by the producer to reserve space in the

sub-buffer. In order to apply monotonically increasing time stamps to events which

are physically consecutive in the buffer, the time stamp is read within the CAS loop.

This ensures that no space reservation succeeds between the time-stamp register read

and the atomic space reservation, and therefore ensures that a successful buffer-space

reservation and time-stamp read are indivisible from one another from a CPU’s per-

spective. Such mechanisms to make many instructions appear to execute atomically

is however limited to operations not having side-effects outside of the variables lo-

cated on the stack or in registers which can be re-executed upon failure, except for

the single CAS operation which has side-effects when it succeeds. It is therefore mostly

limited to read operations and the computation of the required slot size for the event.

Once space is reserved, the remaining operations are done out-of-order. This
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Algorithm: TryReserveSlot(payload size)

Require: An integer payload size ≥ 0.

1: Read write count
2: Read time stamp counter
3: Calculate required slot size
4: Calculate slot offset
5: if slot offset is at beginnig of sub-buffer then

6: if Negation of Eqn. 5.3 then

7: Increment event lost count
8: slot size = FAIL
9: return slot size
10: end if

11: if Eqn. 5.1 (in non-overwrite mode) then

12: Increment event lost count
13: slot size = FAIL
14: return slot size
15: end if

16: end if

17: Update buffer switch flags
18: return < slot size, slot offset, buffer switch flags >

Algorithm 5.1 TryReserveSlot(payload size)

means that if an interrupt nests over a probe, it will reserve a buffer slot next to

the one being written to by the interrupted thread, will write its event data in its

own reserved slot and will atomically increment the commit count before returning

to the previous probe stack. When a slot has been completely written to, the Com-

mitSlot() algorithm is used to update the commit count. It is also responsible for

clearing the sub-buffer reference flag if the sub-buffer is filled and updating commit

seq.

There is one commit seq per sub-buffer. It also increments forever in the same

way the write count does, with the difference that it only counts the per-subbuffer

bytes committed rather than the number of bytes reserved for the whole buffer. The

difference between the write count MSBs divided by the number of sub-buffers and

the commit seq MSBs (with the highest bits corresponding to the number of sub-

buffers set to zero) indicates if the commit count LSBs represent an empty, partially

3. The compiler barrier will be promoted to a write memory barrier by an interprocessor interrupt
sent by the read-side ReadGetSubbuf(), as explained thoroughly in Section 5.4.4.
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Algorithm: ReserveSlot(payload size)

Require: An integer payload size ≥ 0
Ensure: slot offset is the only reference to the slot during all the reserve and commit

process, the slot is reserved atomically, time stamps of physically consecutive slots
are always incrementing.

1: repeat

2: <slot size, slot offset, buffer switch flags>
= TryReserveSlot(payload size)

3: if slot size = FAIL then

4: return FAIL

5: end if

6: until CAS of write count succeeds

7: PushReader()
8: Set reference flag in pointer to current sub-buffer. Indicates

that the writer is using this sub-buffer.

9: SwitchOldSubbuf()
10: SwitchNewSubbuf()
11: EndSwitchCurrent()
12: return <slot size, slot offset>

Algorithm 5.2 ReserveSlot(payload size)

Algorithm: CommitSlot(slot size, slot offset)

Require: An integer slot size > 0 and the slot offset

1: Compiler barrier 3

2: Issue local add() to increment commit count of slot size
3: if Eqn. 5.3 then

4: commit seq old = commit seq
5: while commit seq old < commit count do
6: try CAS of commit seq. Expect commit seq old, new value written is

commit count. Save value read to commit seq old.
7: end while

8: end if

Algorithm 5.3 CommitSlot(slot size, slot offset)
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or completely full sub-buffer.

As shown at the end of ReserveSlot(), switching between sub-buffers is done

out-of-order. It consists of two phases: the first detects, within the CAS loop, if a

buffer switch is needed. If this is the case, flags are set on the probe stack to make

the out-of-order code, following the loop, increments the sub-buffer commit counts of

the sub-buffer we are switching out from and the sub-buffer we are switching into.

The sub-buffer switched out from will therefore have its commit count incremented

by the missing amount of bytes between the number of bytes reserved (and thus

monotonically incrementing) and the sub-buffer size. Switching to a new sub-buffer

adds the new sub-buffer header’s size to the new sub-buffer’s commit count. An-

other case is also possible, namely when there is exactly enough event data to fit

perfectly in the sub-buffer. In this case, an end switch current flag is raised so the

header information is finalized. All these buffer switching cases also populate the

sub-buffer headers with information regarding the current time stamp and padding

size at the end of the sub-buffer, prior to incrementing the commit count. Switch-

OldSubbuf(), SwitchNewSubbuf() and EndSwitchCurrent() are therefore

responsible for incrementing the commit count of the amount of padding added at

the end of a sub-buffer, clearing the reference flag when the sub-buffer is filled and

updating commit seq.

Pushing a reader, represented by PushReader(), is done by a writer in flight

recorder mode when it detects that the buffer is full. In that case, the writer sets the

read count to the beginning of the following sub-suffer.

Flushing the buffers while tracing is active, as done by the pseudo-code presented

in Algorithm ForceSwitch(), is required to permit streaming of information with

a bounded latency, between the time events are written in the buffers and event

delivery to user-space. It is a special-case of normal space reservation which does not

reserve space in the sub-buffer, but forces a buffer switch if the current sub-buffer is

non-empty. Buffer switch is called from a periodical timer, configurable by the user

to select how often buffer data must be flushed.

Consumer

The consumer, lttd, uses two system calls, poll() and ioctl(), to control the inter-

action with the memory buffers, and splice() as a mean to extract the buffers to disk

or to the network without extra copy. At kernel-level, we specialize those three sys-
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Algorithm: ForceSwitch()

Ensure: Buffer switch is done if sub-buffer contains data

1: repeat

2: Calculate the commit count needed to fill the current sub-buffer.
3: until CAS of write count succeeds

4: PushReader()
5: Set reference flag in pointer to current sub-buffer. Indicates

that the writer is using this sub-buffer.

6: SwitchOldSubbuf()
7: SwitchNewSubbuf()

Algorithm 5.4 ForceSwitch()

tem calls for the virtual files presented by DebugFS. The daemon waits for incoming

data using poll(). This system call waits to be woken up by the timer interrupt (see

the AsyncWakeupReadersTimer() pseudo-code in Algorithm 5.8). Once data is

ready, it returns the poll priority to user-space. If the tracer is currently writing in

the last available sub-buffer of the buffer, a high priority is returned. Pseudo-code

ReadPoll() summarizes the actions taken by the poll() system call.

Once control has returned to user-space from the poll() system call, the dae-

mon takes a user-space mutex on the buffer and uses the ioctl() system call to per-

form buffer locking operations. Its implementation uses the ReadGetSubbuf() and

ReadPutSubbuf() algorithms. The former operation, detailed in Algorithm 5.6,

reserves a sub-buffer for the reader and returns the read count. If the lower-level buffer

writing scheme would allow concurrent accesses to the reserved sub-buffer between the

reader and the writer, this value could be used to verify, in the ReadPutSubbuf()

operation, detailed in Algorithm 5.7, that the reader has not been pushed by a writer

dealing with buffers in flight recorder mode. However, as we present below, this pre-

caution is unnecessary because the underlying buffer structure does not allow such

concurrency.

The specialized ioctl() operation is responsible for synchronizing the reader with

the writer’s buffer-space reservation and commit. It is also responsible for making

sure the sub-buffer is made private to the reader to eliminate any possible race in

flight recorder mode. This is achieved by adding a supplementary sub-buffer, owned

by the reader. A table with pointers to the sub-buffers being used by the writer
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Algorithm: ReadPoll()

Ensure: Returns buffer readability state and priority

1: Wait on read wait wait queue.
2: if Eqn. 5.4 then

3: if Sub-buffer is finalized (freed by the tracer) then

4: Hang up.
5: return POLLHUP

6: else

7: No information to read.
8: return OK

9: end if

10: else

11: if Eqn. 5.1 then

12: High-priority read.
13: return POLLPRI

14: else

15: Normal read.
16: return POLLIN

17: end if

18: end if

Algorithm 5.5 ReadPoll()

allows the reader to change the reference to each sub-buffer atomically. The Read-

GetSubbuf() algorithm is responsible for atomically exchanging the reference to

the sub-buffer about to be read with the sub-buffer currently owned by the reader. If

the CAS operation fails, the reader does not get access to the buffer for reading.

Given that sub-buffer management data structures are aligned on 4 or 8-bytes

multiples, we can use the lowest bit of the sub-buffer pointer to encode whether it is

actively referenced by the writer. This ensures that the pointer exchange performed

by the reader can never succeed when the writer is actively using the reference to

write to a sub-buffer about to be exchanged by the reader.

Asynchronous buffer delivery

Because the probe cannot interact directly with the rest of the kernel, it cannot call

the scheduler to wake up the consumer. Instead, this ready to read sub-buffer delivery

is done asynchronously by a timer interrupt. This interrupt checks if each buffer
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Algorithm: ReadGetSubbuf()

Ensure: Take exclusive reader access to a sub-buffer.

1: Read read count.
2: Read the commit seq corresponding to the read count.
3: Issue a smp mb() (Memory Barrier on multiprocessor) to ensure commit seq read

is globally visible before sending the IPI (Interprocessor Interrupt).
4: Send IPI to target writer CPU (if differs from the local reader CPU) to issue a

smp mb(). This ensures that data written to the buffer and write count update
are globally visible before the commit seq write. Wait for IPI completion.

5: Issue a smp mb() to ensure the reserve count and buffer data read are not re-
ordered before IPI execution.

6: Read reserve count.
7: if Negation of Eqn. 5.2 then

8: return EAGAIN

9: end if

10: if Eqn. 5.4 (Only flight recorder) then
11: return EAGAIN

12: end if

13: if Writer is holding a reference to the sub-buffer about to be exchanged ∨ Ex-
change of reader/writer sub-buffer reference fails then

14: return EAGAIN

15: end if

16: return read count

Algorithm 5.6 ReadGetSubbuf()

Algorithm: ReadPutSubbuf(arg read count)

Require: read count returned by ReadGetSubbuf() (arg read count).
Ensure: Release exclusive reader access from a sub-buffer. Always succeeds even if

the writer pushed the reader, because the reader had exclusive sub-buffer access.

1: new read count = arg read count + subbuffer size.
2: CAS expects arg read count, replaces with new read count
3: return OK

Algorithm 5.7 ReadPutSubbuf(arg read count)
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contains a filled sub-buffer and wakes up the readers waiting in the read wait queue

associated with each buffer accordingly. This mechanism is detailed in Algorithm 5.8.

5.4.4 Memory Barriers

Although LTTng mostly keeps data local to each CPU, cross-CPU synchronization

is still required at three sites:

– At initial time-stamp counters synchronization, done at boot-time by the op-

erating system. This heavy synchronization, if not done by the BIOS (Basic

Input/Output System), requires full control of the system.

– When the producer finishes writing to a sub-buffer, making it available for

reading by a thread running on an arbitrary CPU. This involves using the

proper memory barriers ensuring that all written data is committed to memory

before another CPU starts reading the buffer.

– At consumed data counter update, involving the appropriate memory barriers

ensuring the data has been fully read before making the buffer available for

writing.

The two points at which a sub-buffer can pass from one CPU to another is when it

is exchanged between the producer and the consumer and when it goes back from the

consumer to the producer, because the consumer may run on a different CPU than the

producer. Good care must therefore be taken to make sure correct memory ordering

between buffer management variables and the buffer data writes. The condition which

makes a sub-buffer ready for reading is represented by Eqn. 5.2, which depends on the

read count and the commit seq counter corresponding to the read count. Therefore,

before incrementing the sub-buffer commit seq, a write memory barrier must be issued

on SMP systems allowing out-of-order memory writes to ensure the buffer data is

written before the commit seq is updated. On the read-side, before reading the commit

seq, a read memory barrier must be issued on SMP. It insures correct read ordering

of counter and buffer data.

LTTng buffering uses an optimization over the classic memory barrier model. In-

stead of executing a write memory barrier before each commit seq update, a simple

compiler optimization barrier is used to make sure data written to buffer and commit

seq update happen in program order with respect to local interrupts. Given that the

write order is only needed when the read-side code needs to check the buffer’s commit
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Algorithm: AsyncWakeupReadersTimer()

Ensure: Wake up readers for full sub-buffers

1: for all Buffers do

2: if Eqn. 5.2 then

3: Wake up consumers waiting on the buffer read wait queue.
4: end if

5: end for

Algorithm 5.8 AsyncWakeupReadersTimer()

seq value, Algorithm 5.6 shows how the read-side sends an IPI to execute a memory

barrier on the target CPU between two memory barriers on the local CPU to ensure

that memory ordering is met when the sub-buffer is passed from the writer to the

reader. This IPI scheme promotes the compiler barrier to a memory barrier each

time the reader needs to issue a memory barrier. Given the reader needs to issue

such a barrier only once per sub-buffer switch, compared to a write memory barrier

once per event, this improves performance by removing a barrier from the fast path

at the added cost of an extra IPI at each sub-buffer switch, which happen relatively

rarely. With an average event size of 8 bytes and a typical sub-buffer size of 1 MiB,

the ratio is one sub-buffer switch each 131072 events. Given an IPI executing a write

memory barrier on an Intel Core2 Xeon 2.0 GHz takes about 2500 cycles and that a

local write memory barrier takes 8 cycles, memory barrier synchronization speed is

increased by a factor 419 to 1.

When the buffer is given back to the producer, a synchronized CAS is used to

update the read count, which implies a full memory barrier before and after the

instruction. The CAS ensures the buffer data is read before the read count is updated.

Given that the writer does not have to read any data from the buffer and depends

on reading the read count value to check if the buffer is full (in non-overwrite mode),

only the read count is shared. The control dependency between the test performed

on read count and write to the buffer ensures the writer never writes to the buffer

before the reader has finished reading from it.
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5.4.5 Buffer allocation

The lockless buffer management algorithm found in LTTng allows dealing with

concurrent write accesses to segments of a circular buffer (slots) of variable length.

This concurrency management algorithm does not impose any requirement on the

nature of the memory backend which holds the buffers. The present section will

expose the primary memory backends supported by LTTng as well as the backends

planned for support in future versions.

The primary memory backend used by LTTng is a set of memory pages allocated by

the operating system’s page allocator. Those pages are not required to be physically

contiguous. This ensures that page allocation is still possible even if memory is

fragmented. There is no need to have any virtually contiguous address mapping,

which is preferable given that there is a limited amount of kernel-addressable virtual

address space (especially on 32-bits systems). These pages are accessed through a

single-level page table which performs the translation from a linear address mapping

(offset within the buffer) to a physical page address. Buffer read(), write() and splice()

primitives abstract the non-contiguous nature of the underlying memory layout by

providing an API which present the buffer as a virtually contiguous address space.

LTTng buffers are exported to user-space through the DebugFS file system. It

presents the LTTng buffers as a set of virtual files to user applications and allows

interacting with those files using open(), close(), poll(), ioctl() and splice() system

calls.

LTTng includes a replacement of RelayFS aimed at efficient zero-copy data extrac-

tion from buffer to disk or to the network using the splice() system call. Earlier LTTng

implementation, using RelayFS, were based on mapping the buffers into user-space

memory to perform data extraction. However, this comes at the expense of wasting

precious TLB entries usually available for other use. The current LTTng implementa-

tion uses the splice() system call. Its usage requires creating a pipe. A splice() system

call, implemented specifically to read the buffer virtual files, is used to populate the

pipe source with specific memory pages. In this case, the parts of the buffer to copy

are selected. Then, a second splice() system call (the standard pipe implementation)

is used to send the pages to the output file descriptor, which targets either a file on

disk or a network socket.

Separating the buffer-space management algorithm from the memory backend

support eases the implementation of specialized memory backends, depending on the
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requirements:

– Discontiguous page allocation (presented above) requires adding a software

single-level page table, but permits allocation of buffers at run-time when mem-

ory is fragmented.

– Early boot-time page allocation of large contiguous memory areas requires low

memory fragmentation, but permits faster buffer page access because it does

not need any software page-table indirection.

– Video memory backend can be used by reserving video memory for trace buffers.

It allows trace data to survive hot reboots, which is useful to deal with kernel

crash.

5.5 Experimental results

This section presents the experimental results from the design implementation

under various workloads, and compares these with alternative existing technologies.

5.5.1 Methodology

To present the tracer performance characteristics, we first present the overhead of

the LTTng tracer for various types of workloads on various types of systems. Then,

we compare this overhead to existing state-of-the-art approaches.

The probe CPU-cycles benchmarks, presented in section 5.5.2, demonstrate the

LTTng probe overhead in an ideal scenario, where the data and instructions are already

in cache.

Then, benchmarks representing the real-life workloads tbench and dbench, simu-

late the load of a Samba server for network traffic and for disk traffic, respectively.

A tbench test on loopback interface shows the worse-case scenario of 8 client and 8

server tbench threads heavily using a traced kernel. Scalability of the tracer when

the number of cores increases is tested on the heavy loopback tbench workload.

Yet another set of benchmarks uses lmbench to individually test tracing overhead

on various kernel primitives, mainly system calls and traps, to show the performance

impact of active tracing on those important system components.

Finally, a set of benchmarks runs a compilation of the Linux kernel 2.6.30 with

and without tracing to produce a CPU intensive workload.
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Probe CPU-cycles overhead benchmarks are performed on a range of architectures.

Unless specified, benchmarks are done on an Intel Core2 Xeon E5405 running at

2.0 GHz with 16 GiB of RAM. Tests are executed on a 2.6.30 Linux kernel with full

kernel preemption enabled. The buffers configuration used for high event-rate buffers

is typically two 1 MiB sub-buffers, except for block I/O events, where per-CPU buffers

of eight 1 MiB sub-buffers are used.

5.5.2 Probe CPU-cycles overhead

This test measures the cycle overhead added by a LTTng probe. This provides us

with a per-event overhead lower bound. This is considered a lower-bound because

this test is performed in a tight loop, therefore favoring cache locality. In standard

tracer execution, the kernel usually trashes part of the data and instruction caches

between probe executions.

The number of cycles consumed by calling a probe from a static instrumentation

site passing two arguments, a long and a pointer, on Intel Pentium 4, AMD Athlon,

Intel Core2 Xeon and ARMv7 is presented in Table 5.1. These benchmarks are done in

kernel-space, with interrupts disabled, sampling the CPU time-stamp counter before

and after 20,000 loops of the tested case.

Given that one local CAS is needed to synchronize the tracing space reservation,

based on the results published in [1], we can see that disabling interrupts instead of

using the local CAS would add 34 cycles to these probes on Intel Core2, for an expected

14.3% slowdown. Therefore, not only is it interesting to use local atomic operations

to protect against non-maskable interrupts, but it also improves the performance

marginally. Changing the implementation to disable interrupts instead of using local

CAS confirms this: probe execution overhead increases from 240 to 256 cycles, for a

6.6% slowdown.

Table 5.1 Cycles taken to execute a LTTng 0.140 probe, Linux 2.6.30

Architecture Cycles Core freq. Time
(GHz) (ns)

Intel Pentium 4 545 3.0 182
AMD Athlon64 X2 628 2.0 314
Intel Core2 Xeon 238 2.0 119
ARMv7 OMAP3 507 0.5 1014
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5.5.3 tbench

The tbench benchmark tests the throughput achieved by the network traffic por-

tion of a simulated Samba file server workload. Given it generates network traffic

from data located in memory, it results in very low I/O and user-space CPU time

consumption, and very heavy kernel network layer use. We therefore use this test

to measure the overhead of tracing on network workloads. We compare network

throughputs when running mainline Linux kernel, instrumented kernel and traced

kernel.

This set of benchmarks, presented in Table 5.2, shows that tracing has very little

impact on the overall performance under network load on a 100 Mb/s network card.

8 tbench client threads are executed for a 120s warm up and 600s test execution.

Trace data generated in flight recorder mode reaches 0.9 GiB for a 1.33 MiB/s trace

data throughput. Data gathered in normal tracing to disk reaches 1.1 GiB. The

supplementary data generated when writing trace-data to disk is explained by the

fact that we also trace disk activity, which generates additional events. This very

little performance impact can be explained by the fact that the system was mostly

idle.

Now, given that currently existing 1 Gb/s and 10 Gb/s network cards can generate

higher throughput, and given the 100 Mb/s link was the bottleneck of the previous

tbench test, Table 5.3 shows the added tracer overhead when tracing tbench running

with both server and client on the loopback interface on the same machine, which is

a worse-case scenario in terms of generated throughput kernel-wise. This workload

consists in running 8 client threads and 8 server threads.

The kernel instrumentation, when compiled-in but not enabled, actually acceler-

ates the kernel. This can be attributed to modification of instruction and data cache

layout. Flight recorder tracing stores 92 GiB of trace data to memory, which repre-

Table 5.2 tbench client network throughput tracing overhead

Test Tbench Throughput Overhead Trace Throughput
(MiB/s) (%) (∗103 events/s)

Mainline Linux kernel 12.45 0 –
Dormant instrumentation 12.56 0 –
Overwrite (flight recorder) 12.49 0 104
Normal tracing to disk 12.44 0 107
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Table 5.3 tbench localhost client/server throughput tracing overhead

Test Tbench Throughput Overhead Trace Throughput
(MiB/s) (%) (∗103 events/s)

Mainline Linux kernel 2036.4 0 –
Dormant instrumentation 2047.1 -1 –
Overwrite (flight recorder) 1474.0 28 9768
Normal tracing to disk – – –

sents a trace throughput of 130.9 MiB/s for the overall 8 cores. Tracing adds a 28%

overhead on this workload. Needless to say that trying to export such throughput

to disk would cause a significant proportion of events to be dropped. This is why

tracing to disk is excluded from this table.

5.5.4 Scalability

To characterize the tracer overhead when the number of CPUs increases, we need

to study a scalable workload where tracing overhead is significant. The localhost

tbench test exhibits these characteristics. Figure 5.7 presents the impact of flight

recorder tracing on the tbench localhost workload on the same setup used for Ta-

ble 5.3. The number of active processors varies from 1 to 8 together with the number

of tbench threads. We notice that the tbench workload itself scales linearly in the

absence of tracing. When tracing is added, linear scalability is invariant. It shows

that the overhead progresses linearly as the number of processors increases. There-

fore, tracing with LTTng adds a constant per-processor overhead independent from

the number of processors in the system.

5.5.5 dbench

The dbench test simulates the disk I/O portion of a Samba file server. The goal

of this benchmark is to show the tracer impact on such a workload, especially for

non-overwrite tracing to disk.

This set of benchmarks, presented in Table 5.4, shows tracing overhead on a 8

thread dbench workload. Tracing in flight recorder mode causes a 3% slowdown

on disk throughput while generating 30.2 GiB of trace data into memory buffers.

Normal tracing to disk causes a 35% slowdown on heavy disk operations, but lack of
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Figure 5.7 Impact of tracing overhead on localhost tbench workload scalability

disk bandwidth is causing a significant portion of trace events to be discarded.

Analysis of the buffer state in flight recorder mode shows that 30.2 GiB worth of

data was generated in 720 seconds, for a sustained trace throughput of 43.0 MiB/s.

In non-overwrite mode, the trace is written to the same disk dbench is using. The

tracing throughput is therefore significant compared to the available disk bandwidth.

Table 5.4 dbench disk write throughput tracing overhead

Test Dbench Throughput Overhead Trace Throughput
(MiB/s) (%) (∗103 events/s)

Mainline Linux kernel 1334.2 0 –
Dormant instrumentation 1373.2 -2 –
Overwrite (flight recorder) 1297.0 3 2840
Non-overwrite tracing to disk 872.0 35 2562
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It comes without surprise that only 23 GiB of trace data has been collected to disk

in the non-overwrite trace, with a total of 21.8 million events lost. This trace size

difference is caused both by the events lost (only lost about 244 MiB of data given an

average event size of 12 bytes) and, mostly, to the behavior change generated by the

added disk I/O activity for tracing. While the system is busy writing large chunks of

trace data, it is not available to process smaller and more frequent dbench requests.

This nicely shows how the tracer, in non-overwrite mode, can affect disk throughput

in I/O-heavy workloads.

5.5.6 lmbench

The lmbench test benchmarks various kernel primitives by executing them in

loops. We use this test to appropriately test the tracer overhead on a per-primitive ba-

sis. Running lmbench on the mainline Linux kernel, flight recorder and non-overwrite

tracing kernels, helps understanding the performance deterioration caused by tracing.

When running on a Intel Core2 Xeon E5405, the standard lmbench 3.0 OS test

generates 5.41 GiB of trace data with the default LTTng instrumentation in 6 minutes

for a throughput of 150 MiB/s. When writing to disk the total trace size reaches

5.5 GiB due to the added traced disk I/O overhead.

The “simple system call” test, which calls a system call with small execution time

in a tight loop, takes 0.1752 µs on the mainline Linux kernel. Compared to this, it

takes 0.6057 µs on the flight recorder mode traced kernel. In fact, the benchmarks for

flight recorder tracing and disk tracing are very similar, because the only difference

is the CPU time taken by the lttd daemon and the added disk I/O.

The “simple system call” slowdown is explained by the fact that two sites are

instrumented: system call entry and system call exit. Based on measurements from

Table 5.1, we would expect each event to add at least 0.119 µs to the system call.

In reality, they add 0.215 µs each to the system call execution. The reasons for this

additional slowdown is because supplementary registers must be saved in the system

call entry and exit paths and cache effects. The register overhead is the same as

the well-known ptrace() debugger interface, secure computing and process accounting

because these and LTTng all share a common infrastructure to extract these registers.

Some system calls have more specific instrumentation in their execution path. For

instance, the file name is extracted from the open() system call, the file descriptor
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and size are extracted from the read() system call. The performance degradation is

directly related to the number of probes executed. For the read() system call, the

mainline Linux kernel takes 0.2138 µs, when the flight recorder tracing kernel takes

0.8043 µs. By removing the “Simple system call” tracing overhead, this leaves a

0.1600 µs, which corresponds to the added event in the read() system call.

The page fault handler, a frequently executed kernel code path, is instrumented

with two tracepoints. It is very important due to the frequency at which it is called

during standard operation. On workloads involving many short-lived processes, page

faults, caused by copy-on-write, account for an important fraction of execution time

(4% of a Linux kernel build). It runs in 1.3512 µs on the mainline Linux kernel

and takes 1.6433 µs with flight recorder activated. This includes 0.146 µs for each

instrumentation site, which is close to the expected 0.119 µs per event. Non-cached

memory accesses and branch prediction buffer pollution are possible causes for such

small execution time variation from expected results.

Instrumentation of such frequently executed kernel code path is the reason why

minimizing probe execution time is critical to the tracer’s usability on heavy work-

loads.

Other lmbench results show that some instrumented code paths suffer from greater

overhead. This is mostly due to the use of a less efficient dynamic format-string pars-

ing method to write the events into the trace buffers. For instance, the “Process

fork+exit” test takes 211.5 µs to execute with tracing instead of 177.8 µs, for an

added overhead of 33.7 µs for each entry/exit pair. Based on execution trace analysis

of standard workloads, as of LTTng 0.140, events corresponding to process creation

and destruction where not considered to be frequently used compared to page faults,

system calls, interrupts and scheduler activity. If this becomes a concern, the opti-

mized statically-compiled version of the event serializer could be used.

5.5.7 gcc

The gcc compilation test aims at showing the tracer impact on a workload where

most of the CPU time is spent in user-space, but where many short-lived processes are

created. Building the Linux kernel tree is such a scenario, where the make creates one

short-lived gcc instance per file to compile. This therefore shows mostly tracer impact

on process creation. This includes page fault handler instrumentation impact, due to
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copy-on-write and lazy page population mechanisms when processes are created and

when executables are loaded. This also includes instrumentation of scheduler activity

and process state changes.

Table 5.5 presents the time taken to build the Linux kernel with gcc. This test is

performed after a prior cache-priming compilation. Therefore, all the kernel sources

are located in cache.

Tracing the kernel in flight recordermode, with the default LTTng instrumentation,

while compiling the Linux kernel, generates 1.1 GiB of trace data for a 3% slowdown.

The results show, without surprise, that kernel tracing has a lower impact on user-

space CPU-bound workloads than I/O-bound workloads. Tracing to disk generates

1.3 GiB of data output. This is higher than the trace data generated for flight

recording due to the supplementary disk activity traced. Trace throughput, when

tracing to disk, is lower than flight recorder mode, because the tracer disk activity

generates fewer events per second than kernel compiling in the CPU time it consumes,

hence reducing the number of events per second to record.

5.5.8 Comparison

Previous work on highly scalable operating systems has been done at IBM Re-

search resulting in the K42 operating system [38], which includes a built-in highly scal-

able kernel tracer based on a lockless buffering scheme. As presented in Section 5.2,

K42’s buffering algorithm contains rare race conditions which could be problematic

especially given LTTng buffer and event size flexibility. Being a research operating

system, K42 does not support CPU hotplug, nor distributing tracing overhead across

idle cores, and is limited to a subset of existing widely used hardware, which provides

a 64-bits cycle counter synchronized across cores.

Table 5.5 Linux kernel compilation tracing overhead

Test Time Overhead Trace Throughput
(s) (%) (∗103 events/s)

Mainline Linux kernel 85 0 –
Dormant instrumentation 84 -1 –
Overwrite (flight recorder) 87 3 822
Normal tracing to disk 90 6 816
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The instrumentation used in LTTng has been taken from the original LTT project [19].

It consists of about 150 instrumentation sites, some architecture-agnostic, others be-

ing architecture-specific. They have been ported to the “Linux Kernel Markers” [52]

and then to “Tracepoints” [51] developed as part of the LTTng project and currently

integrated in the mainline Linux kernel. The original LTT and earlier LTTng versions,

used RelayFS [53] to provide memory buffer allocation and mapping to user-space.

LTTng re-uses part of the splice() implementation found in RelayFS.

To justify the choice of using static code-level instrumentation instead of dynamic,

breakpoint-based instrumentation, we must explain the performance impact of break-

points. These are implemented with a software interrupt triggered by a breakpoint

instruction temporarily replacing the original instructions to instrument. The spe-

cialized interrupt handler executes the debugger or the tracer when the breakpoint

instruction is executed. An interesting result of the work presented in this paper is

that the LTTng probe takes less time to run than a breakpoint alone. Tests running

an empty Kprobe, which includes a breakpoint and single-stepping, in a loop shows

it has a performance impact of 4200 cycles, or 1.413 µs, on a 3 GHz Pentium 4. Com-

pared to this, the overall time taken to execute an LTTng probe is 0.182 µs, which

represents a 7.8:1 acceleration compared to the breakpoint alone.

It is also important to compare the lockless scheme proposed to an equivalent

solution based on interrupt disabling. We therefore created an alternative implemen-

tation of the LTTng buffering scheme based on interrupt disabling for this purpose.

It uses non-atomic operations to access the buffer state variables and is therefore not

NMI-safe. Table 5.6 shows that the lockless solution is either marginally faster (7–8%)

on architectures where interrupt disabling cost is low, or much faster (34%) in cases

where interrupt disabling is expensive in terms of cycles per instruction.

Table 5.6 Comparison of lockless and interrupt disabling LTTng probe execution
time overhead, Linux 2.6.30

Architecture IRQ-off Lockless Speedup
(ns) (ns) (%)

Intel Pentium 4 212 182 14
AMD Athlon64 X2 381 314 34
Intel Core2 Xeon 128 119 7
ARMv7 OMAP3 1108 1014 8
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Benchmarks performed on DTrace [33], the Solaris tracer, on a Intel Pentium 4

shows a performance impact of 1.18 µs per event when tracing all system calls to

a buffer. LTTng takes 0.182 µs per event on the same architecture, for a speedup

of 6.42:1. As shown in this paper, tracing a tbench workload with LTTng generates

a trace throughput of 130.9 MiB/s, for approximately 8 million events/s with an

average event size of 16 bytes. With this workload, LTTng has a performance impact

of 28%, for a workload execution time of 1.28:1. DTrace being 6.42 times slower

than LTTng, the same workload should be expected to be slowed down by 180% and

therefore have an execution time of 2.8:1. Therefore, performance-wise, LTTng has

nothing to envy [34]. This means LTTng can be used to trace workloads and diagnose

problems outside of DTrace reach.

5.6 Conclusion

Overall, the LTTng kernel tracer presented in this paper presents a wide kernel

code instrumentation coverage, which includes tricky non-maskable interrupts, traps

and exception handlers, as well as the scheduler code. It has a per-event performance

overhead 6.42 times lower than the existing DTrace tracer. The performance improve-

ments are mostly derived from the following atomic primitive characteristics: local

atomic operations, when used on local per-CPU variables, are cheaper than disabling

interrupts on many architectures.

The atomic buffering mechanism presented in this paper is very useful for tracing.

The good reentrancy and performance characteristics it demonstrates could be useful

to other parts of the kernel, especially drivers. Using this scheme could accelerate

buffer synchronization significantly and diminish interrupt latency.

A port of LTTng has already been done to the Xen hypervisor and as a user-space

library as proofs of concept to permit studying merged traces taken from the hypervi-

sor, the various kernels running in virtual machines, and user-space applications and

libraries. Future work includes polishing these ports and integrating them to Xen.

Work on modeling and formal verification by model-checking is currently ongoing.
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Chapter 6

Paper 3: User-Level

Implementations of Read-Copy

Update

Abstract

Read-copy update (RCU) is a synchronization primitive that is often used as a

replacement for reader-writer locking, due to the fact that it provides extremely

lightweight read-side primitives with sharply bounded execution times. RCU updates

are typically much heavier weight than are RCU readers, especially when used in con-

junction with locking.

Although RCU is heavily used in a number of kernel-level environments, these

implementations make use of interrupt- and preemption-disabling facilities that are

often unavailable to user-level applications. The few RCU implementations that are

available to user applications either provide inefficient read-side primitives or restrict

the application architecture.

This paper describes several classes of efficient RCU implementations that are based

on primitives commonly available to user-level applications.

Finally, performance comparison of these RCU primitives with each other and to

standard locking leads to a discussion on appropriate locking mechanisms for various

workloads. This opens the door to use of RCU outside of kernels.

6.1 Introduction

Read-copy update (RCU) is a synchronization mechanism that was added to the

Linux kernel in October of 2002. RCU achieves scalability improvements by allowing

reads to occur concurrently with updates. In contrast to conventional locking prim-
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itives that ensure mutual exclusion among concurrent threads regardless of whether

they be readers or updaters, or with reader-writer locks that allow concurrent reads

but not in the presence of updates, RCU supports concurrency between a single updater

and multiple readers. RCU ensures that reads are coherent by maintaining multiple

versions of objects and ensuring that they are not freed up until all pre-existing read-

side critical sections complete. RCU defines and uses efficient and scalable mechanisms

for publishing and reading new versions of an object, and also for deferring reclama-

tion of old versions. These mechanisms distribute the work among read and update

paths in such a way as to make read paths extremely fast. In some cases, as will be

presented in Section 6.4.2, RCU’s read-side primitives have zero overhead.

Although mechanisms similar to RCU have been used in a number of operating-

system kernels [54, 55, 56, 57, 58], and, as shown in Figure 6.1, is heavily used in

the Linux kernel, we are not aware of significant application usage. This lack of

application-level use is due in part to the fact that prior user-level RCU implemen-

tations imposed global constraints on the application’s structure and operation [59],

and in some cases heavy read-side overhead as well [60]. The popularity of RCU in

operating-system kernels has been in part due to the fact that these can accommo-

date the required global constraints imposed by earlier RCU implementations. Ker-

nels therefore permit use of the high-performance quiescent-state based reclamation

(QSBR) class of RCU implementations. In fact, in server-class (CONFIG PREEMPT=n)

Linux-kernel builds, RCU incurs zero read-side overhead [61].

Whereas we cannot yet put forward a single user-level RCU implementation that

is ideal for all user-level environments, the three classes of RCU implementations de-

scribed in this paper should suffice for most applications.

First, Section 6.2 provides a brief overview of RCU, including RCU semantics. Then,

Section 6.3 describes user-level scenarios that could benefit from RCU. This is followed

by the presentation of three classes of RCU implementation in Section 6.4. Finally,

Section 6.5 presents experimental results, comparing RCU solutions to each other and

to standard locks. This leads to recommendations on locking use for various workloads

presented in Section 6.6.



99

6.2 Brief Overview of RCU

This section introduces a conceptual view covering most RCU-based algorithms in

Section 6.2.1 to familiarise the reader with RCU concepts and vocabulary. It then

presents an informal RCU desiderata in Section 6.2.2, which details the goals pursued

in this work. Then, Section 6.2.3 shows how RCU is used to delete an element from a

linked list in the face of concurrent readers. Finally, Section 6.2.4 gives an overview

of RCU semantics, presenting the synchronization guarantees provided by RCU.

6.2.1 Conceptual View of RCU Algorithms

A schematic for the high-level structure of an RCU-based algorithm is shown in

Figure 6.2, which can be thought of as a pictorial view of Equation 6.1 presented in
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Section 6.2.4. The grace period concept, explained thoroughly in section 6.2.4, can

be defined informally for the needs of this section as a period of time such that all

RCU read-side critical sections in existence at the beginning of a given grace period

have completed before its end.

Here, each box labeled “Reads” is an RCU read-side critical section that begins

with rcu read lock() and ends with rcu read unlock(). Each row of RCU read-side

critical sections denotes a separate thread, for a total of four read-side threads. The

two boxes at the bottom left and right of the figure denote a fifth thread, this one

performing an RCU update.

This RCU update is split into two phases, a removal phase denoted by the lower left-

hand box and a reclamation phase denoted by the lower right-hand box. These two

phases must be separated by a grace period, which is determined by the duration of the

synchronize rcu() execution. During the removal phase, the RCU update removes

elements from the data structure (possibly inserting some as well) by issuing an

rcu assign pointer() or equivalent pointer-replacement primitive. These removed
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data elements will not be accessible to RCU read-side critical sections starting after

the removal phase ends, but might still be accessed by RCU read-side critical sections

initiated during the removal phase. However, by the end of the RCU grace period,

all of the RCU read-side critical sections that might be accessing the newly removed

data elements are guaranteed to have completed, courtesy of the definition of “grace

period”. Therefore, the reclamation phase beginning after the grace period ends can

safely free the data elements removed previously.

6.2.2 User-Space RCU Desiderata

Extensive use of RCU applications has lead to the following user-space RCU desider-

ata:

1. Read-side primitives (such as rcu read lock() and rcu read unlock()) bound-

ing RCU read-side critical sections and grace-period primitives (such as synchro-

nize rcu() and call rcu()) must have the property that any RCU read-side

critical section in existence at the start of a grace period completes by the end

of the grace period.

2. RCU read-side primitives should avoid expensive operations such as cache misses,

atomic instructions, memory barriers, and conditional branches.

3. RCU read-side primitives should have O(1) computational complexity to enable

real-time use. This property guarantees freedom from deadlock.

4. RCU read-side primitives should be usable in all contexts, including nested within

other RCU read-side critical sections. Another important special context is li-

brary functions having incomplete knowledge of the user application.

5. RCU read-side primitives should be unconditional, thus eliminating the failure

checking that would otherwise complicate testing and validation. This property

has the nice side-effect of avoiding livelocks.

6. RCU read-side should not cause write-side starvation: grace periods should al-

ways complete, even given a steady flow of time-bounded read-side critical sec-

tions.

7. Any operation other than a quiescent state (and thus a grace period) should be

permitted within an RCU read-side critical section. In particular, non-idempotent

operations such as I/O and lock acquisition/release should be permitted.



102

8. It is permissible to mutate an RCU-protected data structure while executing

within an RCU read-side critical section. Of course, any grace periods following

this mutation must occur after the RCU read-side critical section completes.

9. RCU primitives should be independent of memory allocator design and imple-

mentation, so that RCU data structures may be protected regardless of how their

data elements are allocated and freed.

10. RCU grace periods should not be blocked by threads that halt outside of RCU

read-side critical sections. (But note that most quiescent-state-based imple-

mentations violate this desideratum.)

The RCU implementations described in Section 6.4 are designed to meet the above

list of desiderata.

6.2.3 RCU Deletion From a Linked List

RCU-protected data structures in the Linux kernel include linked lists, hash tables,

radix trees, and a number of custom-built data structures. Figure 6.3 shows how RCU

may be used to delete an element from a linked list that is concurrently being traversed

by RCU readers, as long as each reader conducts its traversal within the confines of a

single RCU read-side critical section. The first column of the figure presents the data

structure view of the updater thread. The second column presents the data structure

view of a reader thread starting before the grace period begins. The third column

presents a reader thread starting after the beginning of the grace period.

The first row of the figure shows a list with elements A, B, and C, to each of which

every RCU readers initiated before the beginning of the grace period might both acquire

and hold references.

The list del rcu() primitive unlinks element B from the list, but leaves the link

from B to C intact, as shown on the second row of the figure. This permits any RCU

readers currently referencing B to advance to C, as shown on the second and third

rows of the figure. The transition between the second and third rows shows the

reader thread data structure view gradually seeing element B disappear. During this

transition, some readers will see element B and others will not. Although there might

be RCU readers still referencing Element B, new RCU readers can no longer acquire a

reference to it.
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The synchronize rcu() primitive waits for one grace period, after which all pre-

existing RCU read-side critical sections will have completed, resulting in the state

shown in the fourth row of the figure. This state is the same as the second and

third rows, except for the fact that there can no longer be any RCU readers holding

references to Element B. This change of state of B from globally visible to private is

depicted by using a white background for the B box. At this point, it is safe to invoke

free(), reclaiming the memory consumed by element B, as shown on the last row of

the figure.

Of course, the deletion process must be protected by some mutual-exclusion mech-

anism to ensure concurrent deletion of two contiguous list items do not corrupt the

list. One common strategy to perform this mutual exclusion is to use locking.

Although RCU is used in a wide variety of ways, this list-deletion process is the
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most common usage.

6.2.4 Overview of RCU Semantics

RCU semantics comprise the grace-period guarantee and the publication guaran-

tee. Synchronization guarantees among concurrent modifications of the RCU-protected

data structure must be provided by some other mechanism. In the Linux kernel, this

other mechanism is typically locking, but any other suitable mechanism may be used,

including atomic operations, non-blocking synchronization, transactional memory, or

a single designated updater thread.

Grace-Period Guarantee

RCU operates by defining RCU read-side critical sections, delimited by rcu read -

lock() and rcu read unlock(), and by defining grace periods, which are periods of

time such that all RCU read-side critical sections in existence at the beginning of a given

grace period have completed before its end. The RCU primitive synchronize rcu()

starts a grace period and then waits for it to complete. Most RCU implementations

allow RCU read-side critical sections to be nested.

Somewhat more formally, suppose we have a group of C-language statements Si

within an RCU read-side critical section as follows:

rcu read lock(); S0; S1; S2; ...; rcu read unlock();

Suppose further that we have a group of C-language mutation statements Mi and a

group of C-language destruction statements Di separated by an RCU grace period:

M0; M1; M2; ...; synchronize rcu(); D0; D1; D2; ...;

Then the following holds, where “→” indicates that the statement on the left

executes prior to that on the right, and where “=⇒” denotes logical implication:

∃Sa,Mb(Sa → Mb) =⇒ ∀Si, Dj(Si → Dj) (6.1)

In other words, if any statement in a given RCU read-side critical section executes

prior to any statement preceding a given grace period, then all statements in that

RCU read-side critical section must execute prior to any statement following that same

grace period.
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This guarantee permits RCU-based algorithms to trivially avoid a number of diffi-

cult race conditions that can otherwise result in poor performance, limited scalability,

and great complexity. However this guarantee is insufficient, as it does not show that

readers can operate consistently while an update is in progress. This case is covered

by the guarantee presented in the next section.

Publication Guarantee

It is important to note that the statements Sa and Mb may execute concurrently,

even in the case where Sa is referencing the same data element thatMb is concurrently

modifying. The publication guarantee associated with the rcu assign pointer()

and rcu dereference() primitives allow this concurrency to be handled both cor-

rectly and easily: any dereference of a pointer returned by rcu dereference() is

guaranteed to see any changes prior to the corresponding rcu assign pointer(), in-

cluding any changes prior to any earlier rcu assign pointer() involving that same

pointer.

Somewhat more formally, suppose that the rcu assign pointer() is used as fol-

lows:

I0; I1; I2; ...; rcu assign pointer(g, p);

where each Ii is a C-language statement that initializes a field in the structure ref-

erenced by the local pointer p, and where the global pointer g is visible to reading

threads.

Then the body of a canonical RCU read-side critical section would appear as follows:

q = rcu dereference(g); R0; R1; R2; ...;

where this RCU read-side critical section is enclosed in rcu read lock() and rcu -

read unlock(), q is a local pointer, g is the same global pointer updated by the

earlier rcu assign pointer() (and possibly updated again by some later invocations

of rcu assign pointer()), and each Ri dereferences q to access one of the fields

initialized by one of the statements Ii.

Then we have the following, where A is the rcu assign pointer() and D is the

rcu dereference():

A → D =⇒ ∀Ii, Rj(Ii → Rj) (6.2)
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In other words, if a given rcu dereference() statement accesses the value stored by a

given rcu assign pointer(), then all statements dereferencing the pointer returned

by that rcu dereference() must see the effects of any initialization statements pre-

ceding the rcu assign pointer().

This guarantee allows new data to be initialized and added to an RCU-protected

data structure in face of concurrent RCU readers.

Given both the grace-period and publication guarantees, these five primitives en-

able a wide variety of algorithms and data structures providing extremely low read-

side overheads for read-mostly data structures [61, 59, 62, 63]. Again, note that con-

current updates must be handled by some synchronization mechanism, be it locking,

atomic operations, non-blocking synchronization, transactional memory, or a single

updater thread.

With this background on RCU, we are ready to consider how it might be used in

user-level applications.

6.3 User-Space RCU Usage Scenarios

The past year has seen increased interest in applying RCU to user-space applica-

tions.

User-level RCU was needed for a user-level infrastructure that provides low-overhead

tracing for user-mode applications. RCU is used for tracer control data synchroniza-

tion in the LTTng tracer implementation [1], which is being ported to a user-space

library. This usage scenario poses important constraints on the RCU requirements.

This tracing library cannot be too intrusive in terms of program modification, which

makes the QSBR approach presented in Section 6.4.2 inappropriate for such usage sce-

nario. It also needs to support extensible instrumentation of user-selected execution

sites, including signal handlers, which therefore requires supporting nested RCU criti-

cal sections and RCU reader critical sections in signal handlers. This usage scenario is

also very performance demanding on workloads involving instrumentation of frequent

execution sites. Therefore, having a low-overhead and scalable read-side is very im-

portant. Therefore, an ideal locking primitive for a tracing library would require no

knowledge of the application and could be used to protect data structures used in a

library.

User-level RCU has also been proposed for an elliptics-network distributed cloud-
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based storage project [64]. BIND, a major domain name server at the root of Internet

domain name resolution, is facing multi-threading scalability issues that are currently

addressed with reader-writer locks [65]. Given the fact that domain names are read

often but rarely updated, these could benefit from major performance improvement

by using user-level RCU. Others have mentioned possibilities in financial applications.

One can also argue that RCU has seen long use at user level in the guise of user-mode

Linux.

In general, the area of applicability of RCU to user-mode applications appears

similar to that in the Linux kernel: to read-mostly data structures, especially in cases

where stale data can be accommodated.

6.4 Classes of RCU Implementations

This section describes several classes of RCU implementations, with Sections 6.4.2,

6.4.3, and 6.4.4 presenting user-space RCU implementations that are optimized for dif-

ferent usage by user-space applications, but first Section 6.4.1 describes some primi-

tives that might be unfamiliar to the reader. The implementation presented in Sec-

tion 6.4.2 offers the best possible read-side performance, but requires that each of

the application’s threads periodically pass through a quiescent state, thus strongly

constraining the application’s design. The implementation presented in Section 6.4.3

places almost no constraints on the application’s design, thus being appropriate for

use within a general-purpose library, but having higher read-side overhead. Sec-

tion 6.4.4 presents an implementation having low read-side overhead, and requiring

only that the application give up one signal to RCU processing. Finally, Section 6.4.5

demonstrates how to create wait-free RCU update primitives.

6.4.1 Notation

The examples in this section use a number of primitives that may be unfamiliar,

and are thus listed in this section.

Per-thread variables are defined via DEFINE PER THREAD(). A thread may access

its own instance of a per-thread variable using get thread var(), or some other

thread’s instance via per thread(). The for each thread() primitive sequences

through all threads, one at a time.
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The pthread mutex is a type defined by the pthread library for mutual exclu-

sion variables. The mutex lock() primitive acquires a pthread mutex instance, and

mutex unlock() releases it. The mb keyword stands for “memory barrier”. The

smp mb() primitive emits a full memory barrier, for example, the sync instruction

on the PowerPC architecture. The smp wmb() and smp rmb() primitives are, respec-

tively, store and load memory barriers, corresponding, for example, to the sfence and

lfence instructions on the x86 architecture. The ACCESS ONCE() primitive prohibits

any compiler optimization that might otherwise turn a single fetch or store into multi-

ple fetches, as might happen under heavy register pressure. The barrier() primitive

prohibits any compiler code-motion optimization that might otherwise move fetches

or stores across the barrier() primitive.

1 long rcu_gp_ctr = 0;

2 DEFINE_PER_THREAD(long, rcu_reader_qs_gp);

3

4 static inline void rcu_read_lock(void)

5 {

6 }

7

8 static inline void rcu_read_unlock(void)

9 {

10 }

11

12 static inline void rcu_quiescent_state(void)

13 {

14 smp_mb();

15 __get_thread_var(rcu_reader_qs_gp) =

16 ACCESS_ONCE(rcu_gp_ctr) + 1;

17 smp_mb();

18 }

19

20 static inline void rcu_thread_offline(void)

21 {

22 smp_mb();

23 __get_thread_var(rcu_reader_qs_gp) =

24 ACCESS_ONCE(rcu_gp_ctr);

25 }

26

27 static inline void rcu_thread_online(void)

28 {

29 __get_thread_var(rcu_reader_qs_gp) =

30 ACCESS_ONCE(rcu_gp_ctr) + 1;

31 smp_mb();

32 }

Figure 6.4 RCU read side using quiescent states
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6.4.2 Quiescent-State-Based Reclamation RCU

The QSBR RCU implementation provides near zero-overhead read-side, but requires

modifying the application, as this section explains.

Figure 6.4 shows the read-side primitives used to construct a user-level quiescent-

state-based reclamation (QSBR) implementation of RCU based on quiescent states. As

can be seen from lines 4–10 in the figure, the rcu read lock() and rcu read unlock()

primitives do nothing, and can in fact be expected to be inlined and optimized

away, as they are in server builds of the Linux kernel. This is due to the fact

that quiescent-state-based RCU implementations approximate the extents of RCU read-

side critical sections using the aforementioned quiescent states, which contain calls

to rcu quiescent state(), shown from lines 12–18 in the figure. Threads enter-

ing extended quiescent states (for example, when blocking) may instead use the

thread offline() and thread online() APIs to mark the beginning and the end,

respectively, of such an extended quiescent state. As such, thread online() is analo-

gous to rcu read lock() and thread offline() is analogous to rcu read unlock().

These two functions are shown on lines 20–32 in the figure. In either case, it is invalid

for a quiescent state to appear within an RCU read-side critical section.

In rcu quiescent state(), line 14 executes a memory barrier to prevent any

code prior to the quiescent state from being reordered into the quiescent state.

Lines 15–16 pick up a copy of the global rcu gp ctr (RCU grace-period counter),

using ACCESS ONCE() to ensure that the compiler does not employ any optimizations

that would result in rcu gp ctr being fetched more than once, and then adds one

to the value fetched and stores it into the per-thread rcu reader qs gp variable, so

that any concurrent instance of synchronize rcu() will see an odd-numbered value,

thus becoming aware that a new RCU read-side critical section has started. Instances

of synchronize rcu() that are waiting on older RCU read-side critical sections will

know to ignore this new one. Finally, line 17 executes a memory barrier to ensure

that the update to rcu reader qs gp is seen by all threads to happen before any

subsequent RCU read-side critical sections.

Some applications might use RCU only occasionally, but use it very heavily when

they do use it. Such applications might choose to use rcu thread online() when

starting to use RCU and rcu thread offline() when no longer using RCU. The time

between a call to rcu thread offline() and a subsequent call to rcu thread on-

line() is an extended quiescent state, so that RCU will not expect explicit quiescent
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states to be registered during this time.

The rcu thread offline() function simply sets the per-thread rcu reader qs gp

variable to the current value of rcu gp ctr, which has an even-numbered value. Any

instance of synchronize rcu() will thus know to ignore this thread. A memory bar-

rier is needed at the beginning of the function to ensure all RCU read side-effects are

globally visible before making the thread appear offline. No memory barrier is needed

in the innermost part of rcu thread offline() because it is invalid to perform RCU

accesses on this side of the function. There is therefore no need to prevent reordering.

The rcu thread online() function is the counterpart of rcu thread offline().

It marks the end of the extended quiescent state. It is similar to rcu quiescent -

state(), except that the only memory barrier required is at the end of the function.

Figure 6.5 shows the implementation of synchronize rcu(). It implicitly refers

to the variables declared in Lines 1–2 of Figure 6.4. Lines 1–4 show the rcu gp ongo-

ing() helper function, which returns true if the specified thread’s rcu reader qs gp

variable has an odd-numbered value. Lines 6–22 show the implementation of syn-

chronize rcu() itself. Line 10 is a memory barrier that ensures that the caller’s

mutation of the RCU-protected data structure is seen by all CPUs to happen before

the grace period identified by this invocation of synchronize rcu(). Line 11 ac-

1 static inline int rcu_gp_ongoing(int thread)

2 {

3 return per_thread(rcu_reader_qs_gp, thread) & 1;

4 }

5

6 void synchronize_rcu(void)

7 {

8 int t;

9

10 smp_mb();

11 mutex_lock(&rcu_gp_lock);

12 rcu_gp_ctr += 2;

13 for_each_thread(t) {

14 while (rcu_gp_ongoing(t) &&

15 ((per_thread(rcu_reader_qs_gp, t) -

16 rcu_gp_ctr) < 0)) {

17 poll(NULL, 0, 10);

18 barrier();

19 }

20 }

21 mutex_unlock(&rcu_gp_lock);

22 smp_mb();

23 }

Figure 6.5 RCU update side using quiescent states
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quires a pthread mutex named rcu gp lock in order to serialize concurrent calls to

synchronize rcu(), and line 21 releases it. Line 12 adds the value “2” to the global

variable rcu gp ctr to indicate the beginning of a new grace period. Line 13 se-

quences through all threads, and lines 14–16 check to see if the current thread is still

in an RCU read-side critical section that began before the counter was incremented

back on line 12: if so, we must wait for it on line 17. Line 18 ensures that the compiler

refetches the rcu reader qs gp variable. Line 22 executes one last memory barrier to

ensure that all other CPUs have fully completed their RCU read-side critical sections

before the caller of synchronize rcu() performs any destructive actions (such as

freeing up memory).

This implementation has low-cost read-side primitives, as can be seen in Fig-

ure 6.4. Read-side overhead depends on how often rcu quiescent state() is called.

These read-side primitives qualify as wait-free under the most severe conceivable defi-

nition [66]. The synchronize rcu() overhead ranges from about 600 nanoseconds on

a single-CPU Power5 system up to more than 100 microseconds on a 64-CPU system

with one thread per CPU.

Because it waits for readers to complete, synchronize rcu() does not qualify as

non-blocking. Section 6.4.5 describes how RCU updates can support wait-free algo-

rithms in the same sense as wait-free algorithms are supported by garbage collectors.

However, this implementation requires that each thread either invoke the primitive

rcu quiescent state() periodically or invoke rcu thread offline() for extended

quiescent states. The need to invoke these functions periodically can make this im-

plementation difficult to use in some situations, such as for certain types of library

functions.

In addition, this implementation does not permit concurrent calls to synchroni-

ze rcu() to share overlapping grace periods. That said, one could easily imagine a

production-quality RCU implementation based on this version of RCU.

Finally, on systems where the rcu gp ctr is implemented using 32-bit counters,

this algorithm can fail if a reader is preempted in line 3 of rcu read lock() in Fig-

ure 6.4 for enough time to allow the rcu gp ctr to advance through more than half

(but not all) of its possible values. Although one solution is to avoid 32-bit systems,

32-bit systems can be handled by adapting rcu read lock() and rcu read unlock()

from Figure 6.6 for use in rcu quiescent state() and rcu offline thread(), re-

spectively. This would of course also require adopting the synchronize rcu() im-
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plementation from Figure 6.7.

Another point worth discussing is that if read-side critical sections are expected

to execute in a signal handler, the rcu quiescent state() primitive must run with

signals disabled, and signals must be kept disabled while threads are kept offline. Ef-

fectively, if a signal handler nests over rcu quiescent state() between the memory

barriers, the read-side could be interleaved with the rcu reader qs gp update and

therefore spawn across two grace periods, which could cause synchronize rcu() to

return before the quiescent state is reached and lead to data corruption.

The next section discusses an RCU implementation that is safe for use in libraries,

where the library code cannot guarantee that all threads of a yet-as-unwritten appli-

cation will traverse quiescent states in a timely fashion.

6.4.3 General-Purpose RCU

The general-purpose RCU implementation can in theory be used in any software

environment, including even in library functions that are not aware of the design of

the enclosing application. However, the price paid for this generality is relatively

high read-side overhead, though this overhead is still significantly less than a single

compare-and-swap operation on most hardware.

A global variable rcu gp ctr is initialized to 1 and a per-thread variable rcu -

reader gp is initialized to zero. The low-order bits of rcu reader gp is a count of the

rcu read lock() nesting depth, while the upper bit indicates the grace-period phase

at the time of the invocation of the outermost rcu read lock() [67]. The upper bit

of global variable rcu gp ctr is the current grace-period phase, while the low-order

field is set to the value 1 for reasons that will become apparent shortly.

The read-side primitives are shown in Figure 6.6. Lines 1–4 are declarations,

lines 6–19 are rcu read lock(), and lines 21–27 are rcu read unlock().

In rcu read lock(), line 11 obtains a reference to the current thread’s instance of

rcu reader gp, and line 12 fetches the contents into the local variable tmp. Line 13

then checks to see if this is the outermost rcu read lock(), and, if so, line 14 copies

the current value of the global rcu gp ctr to this thread’s rcu reader gp variable,

thereby snapshotting the current grace-period phase and setting the nesting count

to 1 in a single operation. Otherwise, line 17 increments the nesting count in this

thread’s rcu reader gp variable.
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1 #define RCU_GP_CTR_BOTTOM_BIT 0x80000000

2 #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BOTTOM_BIT - 1)

3 long rcu_gp_ctr = 1;

4 DEFINE_PER_THREAD(long, rcu_reader_gp);

5

6 static inline void rcu_read_lock(void)

7 {

8 long tmp;

9 long *rrgp;

10

11 rrgp = &__get_thread_var(rcu_reader_gp);

12 tmp = *rrgp;

13 if ((tmp & RCU_GP_CTR_NEST_MASK) == 0) {

14 *rrgp = ACCESS_ONCE(rcu_gp_ctr);

15 smp_mb();

16 } else {

17 *rrgp = tmp + 1;

18 }

19 }

20

21 static inline void rcu_read_unlock(void)

22 {

23 long tmp;

24

25 smp_mb();

26 __get_thread_var(rcu_reader_gp)--;

27 }

Figure 6.6 RCU read side using memory barriers

Line 26 decrements the thread’s rcu reader gp, which has the effect of decre-

menting the nesting count.

For outermost read-side rcu read lock(), the memory barrier on line 15 ensures

that the rcu reader gp value is globally observable before any of the outermost read-

side critical section memory accesses. It ensures that neither the compiler nor the

CPU will reorder memory accesses across this barrier by adding a compiler barrier and

issuing a memory barrier instruction. Only the outermost rcu read lock() needs to

have such memory barrier because only this outermost lock can change the reader’s

current grace period.

In rcu read unlock(), line 25 executes a memory barrier to ensure that all

globally observable effects of the RCU read-side critical section reach memory before

rcu reader gp is decremented. The memory barrier on line 25 is needed only for the

outermost rcu read unlock(), but given the outermost and innermost nesting level

behave in the exact same way, a branch in the rcu read unlock() code is unneeded,

and given the common case is to perform single-level nesting, the memory barrier is

executed unconditionally for innermost and outermost nesting levels.
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Section 6.4.4 shows one way of getting rid of both memory barriers; however,

even with the memory barriers, both rcu read lock() and rcu read unlock() are

wait-free.

The effect of this implementation of rcu read lock() and rcu read unlock() is

that a given thread may be ignored by the current grace-period phase in either of the

following cases:

1. The lower-order bits of the thread’s rcu reader gp variable are all zero, in

which case the thread is not currently in an RCU read-side critical section.

2. The upper bit of the thread’s rcu reader gp variable matches that of the global

rcu gp ctr, in which case this thread’s RCU read-side critical section started

after the beginning of the current grace-period phase.

These checks are implemented by the function rcu old gp ongoing(), which is

shown on lines 1–7 of Figure 6.7. This figure implicitly refers to the declarations

and variables in Lines 1–4 of Figure 6.6. Given a thread t, line 3 fetches t’s rcu -

1 static inline int rcu_old_gp_ongoing(int t)

2 {

3 int v = ACCESS_ONCE(per_thread(rcu_reader_gp, t));

4

5 return (v & RCU_GP_CTR_NEST_MASK) &&

6 ((v ^ rcu_gp_ctr) & ~RCU_GP_CTR_NEST_MASK);

7 }

8

9 static void flip_counter_and_wait(void)

10 {

11 int t;

12

13 rcu_gp_ctr ^= RCU_GP_CTR_BOTTOM_BIT;

14 for_each_thread(t) {

15 while (rcu_old_gp_ongoing(t)) {

16 poll(NULL, 0, 10);

17 barrier();

18 }

19 }

20 }

21

22 void synchronize_rcu(void)

23 {

24 smp_mb();

25 mutex_lock(&rcu_gp_lock);

26 flip_counter_and_wait();

27 flip_counter_and_wait();

28 mutex_unlock(&rcu_gp_lock);

29 smp_mb();

30 }

Figure 6.7 RCU update side using memory barriers
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reader gp variable, with the ACCESS ONCE() primitive ensuring the variable is read

with a single memory access. This prevents the compiler from refetching the variable

or fetching it in pieces. Line 5 then checks to see if the low-order field is non-zero,

and line 6 checks to see if the upper bit differs from that of the rcu gp ctr global

variable. Only if both these conditions hold does rcu old gp ongoing() report that

the current grace-period phase must wait on this thread.

Lines 9–20 of Figure 6.7 show flip counter and wait(), which initiates a grace-

period phase and waits for it to elapse. Line 13 complements the upper bit of

global variable rcu gp ctr, which initiates a new grace-period phase. Line 14 cy-

cles through all threads. The “while” loop at line 15 repeatedly executes lines 16–17

until rcu old gp ongoing() reports that the thread no longer resides in an RCU read-

side critical section that affects the current grace-period phase. Line 16, which is

optional, blocks for a short period of time, and line 17 ensures that the compiler

refetches variables when executing rcu old gp ongoing().

Lines 22–30 of Figure 6.7 shows synchronize rcu(), which waits for a full two-

phase grace period to elapse. Line 24 executes a memory barrier to ensure that

any prior data-structure modification is seen by all threads to precede the grace

period. Line 25 acquires rcu gp lock to serialize any concurrent invocations of

synchronize rcu(). Lines 26–27 wait for two grace-period phases, line 28 releases

the lock, and line 29 executes a memory barrier to ensure that all threads see the grace

period happening before any subsequent destructive operations (such as free()).

Memory ordering between the rcu gp ctr complement and testing the reader’s

current grace period with rcu old gp ongoing() is not strictly needed. The only

requirement is that each and every reader thread that was executing in a read-side

critical section before memory barrier on line 24 has finished its critical section after

the memory barrier on line 29. This two-phase grace period scheme is used to en-

sure updater progress through a grace period even if a steady flow of readers comes.

The only requirement is that, when the updater busy-loops waiting for readers, it

eventually reaches a point where all new readers are in the new grace period parity.

Grace period identification, by either a bit (in the two-phase scheme) or by a

counter, ensures that readers starting during the grace period will not prevent the

grace period from completing. In fact, if a simplistic scheme where the updater waits

for all readers to complete would be used, the grace period would be considered as

complete when the updater reaches a point where no reader is active in the system.
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However, this would allow new readers starting after the beginning of the grace period

to impede reaching quiescent state. This would prevent grace-period progress in the

presence of reader threads releasing the read-side critical section for very short periods.

Faster cached local data access would therefore provide an unfair advantage to the

reader over the updater.

Now that the grace period identification question is settled, this raises the question

“why isn’t a single grace-period phase sufficient?” To see why, consider the following

sequence of events which involves one read-side critical section and two consecutive

grace periods:

1. Thread A invokes rcu read lock(), executing lines 11–13 of Figure 6.6, and

finding that this instance of rcu read lock() is not nested, fetching the value

of rcu gp ctr on line 14, but not yet storing it.

2. Thread B invokes synchronize rcu(), executing lines 24 and 25 of Figure 6.7,

then invoking flip counter and wait() on line 26, where it complements the

grace-period phase bit on line 13, so that the new value of this bit is now 1.

3. Because no thread is in an RCU read-side critical section (recall that thread A

has not yet executed the store operation on line 14), Thread B proceeds through

lines 14–19 of Figure 6.7, returns to synchronize rcu(), executing lines 28–30

(recall that line 27 is omitted in this scenario), and returning to the caller.

4. Thread A now performs the store in line 14 of Figure 6.6. Recall that it is using

the old value of rcu gp ctr where the value of the grace-period phase bit is 0.

5. Thread A then executes the memory barrier on line 15, and returns to the caller,

which proceeds in to the RCU read-side critical section.

6. Thread B invokes synchronize rcu() once more, again complementing the

grace-period phase bit on line 13 of Figure 6.7, so that the value is again zero.

7. When Thread B examines Thread A’s rcu reader gp variable on line 6 of Fig-

ure 6.7, it finds that the grace-period phase bit matches that of the global

variable rcu gp ctr. Thread A is therefore ignored, and Thread B therefore

exits from synchronize rcu().

8. But Thread A is still in its RCU read-side critical section in violation of RCU

semantics.

Invoking flip counter and wait() twice avoids this problem by making sure the

grace period waits for reader critical sections for each of the possible two phases.
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A single-phase approach is possible if the current grace period is identified by a

free-running counter, as shown in Section 6.4.2. However, the counter size is important

because this counter is subject overflow. The single-flip problem shown above, which

involves two consecutive grace periods, is actually a case where a single-bit overflow

occurs. A similar scenario is therefore possible given a number of grace periods

sufficient to overflow the grace period counter passing during a read lock section.

This could realistically happen on 32-bit architectures if read-side critical sections

are preempted.

The following section shows one way to eliminate the read-side memory barriers.

6.4.4 Low-Overhead RCU Via Signal Handling

The largest sources of overhead for the QSBR and general-purpose RCU read-side

primitives shown in Figures 6.4 and 6.6 are the memory barriers. One way to eliminate

this overhead is to use POSIX signals. The readers’ signal handlers contain memory-

barrier instructions, which allows an updater to force readers to execute a memory-

barrier instruction only when needed, rather than suffering the extra overhead during

every call to a read-side primitive.

One unexpected but quite pleasant surprise is that this approach results in rela-

tively simple read-side primitives. In contrast, those of preemptable RCU are notori-

ously complex.

The read-side primitives are shown in Figure 6.8, along with the data defini-

tions and state variables. The urcu prefix used for variables stands for “user-space

RCU” Lines 1–3 show the definitions controlling both the urcu gp ctr global variable

(line 5) and the urcu active readers per-thread variable (line 6). The low-order

bits (those corresponding to 1-bit in RCU GP CTR NEST MASK) are used to count the

rcu read lock() nesting level, while the bit selected by RCU GP CTR BIT is used to

detect grace periods. All other bits are unused. The global urcu gp ctr may be

accessed at any time by any thread, but may be updated only by the thread holding

the lock that guards grace-period detection. The per-thread urcu active readers

variable may be modified only by the corresponding thread, and is otherwise read

only by the thread holding the lock that guards grace-period detection.

The rcu read lock() implementation is shown on lines 9–18. Line 12 picks up

the current value of this thread’s urcu active readers variable and places it in the
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1 #define RCU_GP_COUNT (1UL << 0)

2 #define RCU_GP_CTR_BIT (1UL << (sizeof(long) * 4))

3 #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BIT - 1)

4

5 long urcu_gp_ctr = RCU_GP_COUNT;

6 long __thread urcu_active_readers = 0L;

7

8 static inline void rcu_read_lock(void)

9 {

10 long tmp;

11

12 tmp = urcu_active_readers;

13 if (!(tmp & RCU_GP_CTR_NEST_MASK))

14 urcu_active_readers = ACCESS_ONCE(urcu_gp_ctr);

15 else

16 urcu_active_readers = tmp + RCU_GP_COUNT;

17 barrier();

18 }

19

20 static inline void rcu_read_unlock(void)

21 {

22 barrier();

23 urcu_active_readers = urcu_active_readers - RCU_GP_COUNT;

24 }

Figure 6.8 RCU read side using signals

local variable tmp. Line 13 checks to see if the nesting-level portion of urcu active -

readers is zero (indicating that this is the outermost rcu read lock()), and, if so,

line 14 copies the global variable urcu gp ctr to this thread’s urcu active readers

variable. Note that urcu gp ctr has been initialized with its low-order bit set, so

that the nesting level is automatically set correctly. Otherwise, line 16 increments

the nesting level in this thread’s urcu active readers variable. In either case, line 17

executes a barrier directive in order to prevent the compiler from undertaking any

code-motion optimization that might otherwise cause the contents of the subsequent

RCU read-side critical section to be reordered to precede the rcu read lock().

The implementation of rcu read unlock() is shown on lines 20–24. Line 22

executes a barrier directive, again, in order to prevent the compiler from undertaking

any code-motion optimization that might otherwise cause the contents of the prior RCU

read-side critical section to be reordered to follow the rcu read unlock(). Line 23

decrements the value of this thread’s urcu active readers variable, so that if this

is the outermost rcu read unlock(), the low-order bits indicating the nesting level

will now be zero.

Both rcu read lock() and rcu read unlock() execute a sharply bounded num-

ber of instructions, hence both are wait-free.
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1 struct reader_registry {

2 pthread_t tid;

3 long *urcu_active_readers;

4 char *need_mb;

5 } *registry;

6 static char __thread need_mb;

7 static int num_readers;

8

9 static void force_mb_all_threads(void)

10 {

11 struct reader_registry *index;

12

13 if (!registry)

14 return;

15 index = registry;

16 for (; index < registry + num_readers; index++) {

17 *index->need_mb = 1;

18 pthread_kill(index->tid, SIGURCU);

19 }

20 index = registry;

21 for (; index < registry + num_readers; index++) {

22 while (*index->need_mb) {

23 pthread_kill(index->tid, SIGURCU);

24 poll(NULL, 0, 1);

25 }

26 }

27 smp_mb();

28 }

29

30 static void sigurcu_handler(int signo, siginfo_t *siginfo,

31 void *context)

32 {

33 smp_mb();

34 need_mb = 0;

35 smp_mb();

36 }

Figure 6.9 RCU signal handling

The signal-handling primitives are shown in Figure 6.9, including variable decla-

rations on lines 1–7, force mb all threads() on lines 9–28 and sigurcu handler()

on lines 30–36.

The structures on lines 1–5 represents a thread, with its thread ID in tid, a

pointer to its urcu active readers per-thread variable, and a pointer to its need mb

per-thread variable. Line 6 declares the per-thread need mb variable, and line 7

defines the global variable num readers, which contains the number of threads that

are represented in the registry array defined on line 5.

The force mb all threads() function ensures a memory barrier is executed on

each running threads by sending a POSIX signal to all threads, waiting for each to

respond. As we will see, this has the effect of promoting compiler-ordering directives
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such as barrier() to full memory barriers, while avoiding the need to incur the

cost of expensive barriers in read-side primitives in the common case. Lines 13–14

return if there are no readers, and lines 16-19 set each thread’s need mb per-thread

variable to the value one, then send that thread a POSIX signal. Note that the

system call executed for pthread kill() implies a full memory barrier before the

system call execution at the operating system level. This memory barrier ensures

that all memory accesses done prior to the call to pthread kill() are not reordered

after the start of the system call. Lines 20–26 then rescan the threads, waiting until

one each has responded by setting its need mb per-thread variable to zero. Because

some versions of some operating systems can lose signals, line 23 will resend the signal

if a response is not received in a timely fashion. Finally, line 27 executes a memory

barrier to ensure that the signals have been received and acknowledged before later

operations that might otherwise destructively interfere with readers.

Lines 30–36 show the signal handler that runs in response to a given thread receiv-

ing the POSIX signal sent by force mb all threads(). This sigurcu handler()

function executes a pair of memory barriers separated by setting its need mb per-

thread variable to zero. This has the effect of placing a full memory barrier at

whatever point in the thread’s code that was executing at the time that the signal

was received, preventing the CPU from reordering across that point.

The sender thread has two memory barriers around whole sequence consisting of

sending the signal and waiting for the remote thread to acknowledge its reception.

The remote thread executes a memory barrier before acknowledging the signal re-

ception. These two conditions ensure that the remote thread’s program order and

memory accesses passed by a point where they were executing in order between the

two memory barriers on the sender thread. Therefore, execution in program order

and with ordered memory accesses is ensured on the remote processor at that point.

This promotes all compiler barriers on the receiver side to memory barriers, but only

when the matching memory barrier is executed on the sender side.

The update-side grace-period primitives are shown in Figure 6.10. These include

the switch next urcu qparity() on lines 1–4, rcu old gp ongoing() on lines 6–15,

wait for quiescent state() on lines 17–29, and synchronize rcu() on lines 31–

41.

The switch next urcu qparity() function starts a new grace-period phase, where

a pair of such phases make up a grace period. A single phase is insufficient for the same
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1 static void switch_next_urcu_qparity(void)

2 {

3 urcu_gp_ctr = urcu_gp_ctr ^ RCU_GP_CTR_BIT;

4 }

5

6 static inline int rcu_old_gp_ongoing(long *value)

7 {

8 long v;

9

10 if (value == NULL)

11 return 0;

12 v = ACCESS_ONCE(*value);

13 return (v & RCU_GP_CTR_NEST_MASK) &&

14 ((v ^ urcu_gp_ctr) & RCU_GP_CTR_BIT);

15 }

16

17 static void wait_for_quiescent_state(void)

18 {

19 struct reader_registry *i;

20

21 if (!registry)

22 return;

23 i = registry;

24 for (; i < registry + num_readers; i++) {

25 while (rcu_old_gp_ongoing(i->urcu_active_readers))

26 cpu_relax();

27 }

28 }

29 }

30

31 void synchronize_rcu(void)

32 {

33 internal_urcu_lock();

34 force_mb_all_threads();

35 switch_next_urcu_qparity();

36 wait_for_quiescent_state();

37 switch_next_urcu_qparity();

38 wait_for_quiescent_state();

39 force_mb_all_threads();

40 internal_urcu_unlock();

41 }

Figure 6.10 RCU update side using signals
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reasons discussed in Section 6.4.3. This function simply complements the designated

bit in the urcu gp ctr global variable.

The rcu old gp ongoing() determines whether or not the thread with the refer-

enced per-thread urcu active readers variable is still executing within an RCU read-

side critical section that started before this grace-period phase. Lines 10–11 check to

see if there is no thread, and returns zero if there is not, given that a non-existent

thread cannot be executing at all, let alone within an RCU read-side critical section.

This will hold for the whole grace-period because thread registration needs to hold the

internal rcu lock. Otherwise, line 12 fetches the value, using the ACCESS ONCE()

primitive to defeat compiler optimizations that might otherwise cause the value to be

fetched more than once. Line 13 then checks to see if the corresponding thread is in

an RCU read-side critical section, and, if so, line 14 checks to see if that RCU read-side

critical section predates the beginning of the current grace-period phase.

The wait for quiescent state() waits for each thread to pass through a qui-

escent state, thereby completing one phase of the grace period. Lines 21–22 return

immediately if there are no threads. Otherwise, the loop spanning lines 23–28 waits

for each thread to exit any pre-existing RCU read-side critical section.

The synchronize rcu() primitive waits for a full grace period to elapse. Line 33

acquires a pthread mutex that prevents concurrent synchronize rcu() invocations

from interfering with each other and reader thread registration. Line 40 releases this

same pthread mutex. Line 34 ensures that any thread that sees the start of the

new grace period (line 35) will also see any changes made by the caller prior to the

synchronize rcu() invocation. Line 35 starts a new grace-period phase, and line 36

waits for it to complete. Lines 37 and 38 similarly start and end a second grace-period

phase. Line 39 forces each thread to execute a memory barrier, ensuring that each

thread will see any destructive actions subsequent to the call to synchronize rcu()

as happening after any RCU read-side critical section that started before the grace

period began.

Of course, as with the other two RCU implementations, this implementation’s

synchronize rcu() primitive is blocking. The next section shows a way to provide

wait-freedom to RCU updates as well as to RCU readers.



123

6.4.5 Wait-Free RCU Updates

Although some algorithms use RCU as a first-class technique, in most situations

RCU is instead simply used as an approximation to a garbage collector. In these

situations, given sufficient memory, the delays built into synchronize rcu() need

not block the algorithm itself, just as delays built into an automatic garbage collector

need not block a wait-free algorithm.

One way of accomplishing this is shown in Figure 6.11, which implements the

asynchronous call rcu() primitive found in the Linux kernel. Lines 4 and 5 initialize

an RCU callback, and line 6 uses a wait-free enqueue algorithm [68] to enqueue the

callback on the rcu data list. This call rcu() function is then clearly wait-free.

A separate thread would remove and invoke these callbacks after a grace period

has elapsed, using synchronize rcu() for this purpose, as shown on lines 9–24 of

Figure 6.11, with each pass of the loop spanning lines 14–23 waiting for one grace

period. Line 15 uses a (possibly blocking) dequeue algorithm to remove all elements

from the rcu data list en masse, and line 16 waits for a grace period to elapse.

Lines 17–21 invoke all the RCU callbacks from the list dequeued by line 15. Finally,

line 22 blocks for a short period to allow additional RCU callbacks to be enqueued.

1 void call_rcu(struct rcu_head *head,

2 void (*func)(struct rcu_head *head))

3 {

4 head->func = func;

5 head->next = NULL;

6 enqueue(head, &rcu_data);

7 }

8

9 void call_rcu_cleanup(void)

10 {

11 struct rcu_head *next;

12 struct rcu_head *wait;

13

14 for (;;) {

15 wait = dequeue_all(head);

16 synchronize_rcu();

17 while (wait) {

18 next = wait->next;

19 wait->func(wait);

20 wait = next;

21 }

22 poll(NULL, 0, 1);

23 }

24 }

Figure 6.11 Avoiding update-side blocking by RCU
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Note that the longer line 22 waits, the more RCU callbacks will accumulate on the

rcu data list. This is a classic memory/CPU trade-off, with longer waits allowing

more memory to be occupied by RCU callbacks, but decreasing the per-callback CPU

overhead.

Of course, the use of synchronize rcu() causes call rcu cleanup() to be block-

ing. However, as long as the callback function func that was passed to call rcu()

does nothing other than free memory, as long as the synchronization mechanism used

to coordinate RCU updates is wait-free, and as long as there is sufficient memory for

allocations to succeed without blocking, RCU-based algorithms that use call rcu()

will themselves be wait-free.

6.5 Experimental Results

This section presents benchmarks of each RCU mechanism presented in this pa-

per with respect to each other, compared to mutexes, to reader-writer locks and to

per-thread locks 1. It first demonstrates read-side scalability, discusses the impact

of read-side critical section length on the respective locking primitive behavior and

finally presents update operation rate impact on read-side performance. The goal

of this section is to clearly demonstrate in which situation RCU outperforms classic

locking solutions to help identifying for which workloads RCU can bring performance

improvements compared to classic locks in existing applications.

The machines used to run the benchmarks are an 8-core Intel Core2 Xeon E5405

clocked at 2.0 GHz and a 64-core PowerPC POWER5+ clocked at 1.9 GHz. Each

core of the PowerPC machine has 2 hardware threads. To eliminate thread-level

contention for processor resources, benchmarks are performed with affinity to the 64

even-numbered CPUs of the 128 logical CPUs presented by the system.

The mutex and reader-writer lock implementations used for comparison are the

standard pthreads implementations from the GNU C Library 2.7 for 64-bit Intel and

GNU C Library 2.5 for 64-bit PowerPC.

STM (Software Transactional Memory) is not included in these comparisons be-

cause it is already known to incur high overhead and to scale poorly [69]. HTM (Hard-

1. The per-thread lock approach consists in using one mutex per reader thread. The updater
threads must take all the mutexes, always in the same order, to exclude all readers. This approach
ensures reader cache locality at the expense of a slower write-side locking.
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ware Transactional Memory) [70, 71, 72] is likely to be more scalable than STM. How-

ever, HTM hardware is not available to us due to the fact that it is expensive and not

very common, preventing us from including it in our performance results.

6.5.1 Scalability

Figure 6.12 presents the read-side scalability comparison of each RCU mechanism

with standard locking primitives for the PowerPC. The goal of this test is to determine

how each synchronization primitive performs in heavy read-side scenarios when the

number of CPU increases. This is done by executing from 1 to 64 reader threads

for 10 seconds, each taking a read-lock, reading a data unit and releasing the lock

in a tight loop. No updater thread is present in this test. As a result, we observe

that linear scalability is achieved for RCU and per-thread mutex approaches. This

is expected, given readers do not need to exchange cache-lines. The QSBR approach

is the fastest, followed by the signal-based RCU, general-purpose RCU and per-thread

mutex, each adding a constant per-CPU overhead. The Intel Xeon behaves similarly

and is not shown here.
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However, Figure 6.12 does not show the scalability trend of the pthread mutex

and pthread reader-writer lock primitives. This is the purpose of Figure 6.13, which

presents scalability of those two primitives. As we can see, with more than 8 cores,

overall performance actually decreases when the number of core increases.

6.5.2 Read-Side Critical Section Length

Due to the large performance difference between RCU and other approaches, we

notice that linear-scaled graphs are not appropriate for the following comparisons.

Therefore, Figure 6.14 presents the read-side critical section length impact using

logarithmic x and y axis. This benchmark is performed with 8 reader threads taking

the read lock, reading the data structure, waiting for a variable delay and releasing

the lock, without any active updater. Interestingly, on this 8-core machine, we notice

that starting at about 1000 cycles per critical section, the difference between RCU

and per-thread locks becomes insignificant. At 20,000 cycles per critical section,

the reader-writer locks are almost as fast as the other solutions. Only pthread mutex

performance always has significantly worse performance for all critical section lengths.

To appropriately present the 64-core read-side critical section length impact on the

read-side speed, we must first introduce the effects that alter the reader-writer lock

and mutex behavior, which explain why these two primitives saturate with read-side
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critical sections still significantly larger than the primitives using per-cpu data for

read-side synchronization. First, the interprocessor cache-line exchange time affects

the lock access time. Second, the number of cores needing to access the lock also

affects the number of lock-access per second.

Therefore, we first present, in Figure 6.15, the equivalent POWER5+ graph with

only 8 cores used to specifically show the effect of architecture and cache-line access

time change. The cores are spaced by a striding of 8. Changing stride to 1, 2 or 4

(not presented here for brevity) only very slightly affects read speed for reader-writer

lock and mutex. Cores close to each other share a common L2 and L3 cache on the

POWER5+, which causes reader-writer lock and mutex to be slightly faster at lower

striding values. Given it has no significant effect on the read-side critical section

length at which the various locking primitives are equivalent, this factor can be left

out of the rest of this study.

The same workload executed with 64 reader threads is presented in Figure 6.16.

These threads are concurrently reading the data structure with an added variable

delay. We notice, when comparing to the 8-core graph in Figure 6.15, that we need a

critical section about 10 times larger (20,000 instead of 2000 cycles) before the reader-
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Figure 6.15 Impact of read-side critical section length, 8 reader threads on POW-
ER5+, logarithmic scale

writer lock performance reaches the RCU or per-thread lock performances. Therefore,

as we increase the number of cores, reader-writer lock protected critical sections must

be larger to behave similarly to RCU and per-thread locks.

6.5.3 RCU Grace-Period Batch Calibration

After looking at read-side only performance, it is appropriate to see how concurrent

updates influence the read-side behavior. To appropriately represent the RCU update-

side performance impact, we must first calibrate the reclamation batch size to ensure

we amortize the grace-period overhead over multiple updates. Such calibration is

presented for Intel and POWER5+ in Figures 6.17 and 6.18, respectively for 8 cores

and 64 cores. For update operation benchmark, we use half the number of cores for

readers and the other half for updaters.

We calibrate with the signal-based RCU approach, likely to provide the highest

grace-period overhead due to signal-handler execution. The ideal batch size for both

architectures with 8 cores used is determined to be 32768 per updater thread. Given

the test duration is 10 sec, we have to eliminate batch sizes large enough to be
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Figure 6.16 Impact of read-side critical section length, 64 reader threads on POW-
ER5+, logarithmic scale

a significant portion of updates performed during the test because non-reclaimed

batches are not accounted for. This is why the largest batch sizes are ignored even if

they seem slightly better. Figure 6.18 shows that with 64 cores used, the ideal batch

size is slightly lower (4096) due to an increased per-update pointer exchange overhead

caused by linked-load/store-conditional contention. Therefore, smaller batch sizes are

required to amortize the grace-period overhead and perform slightly better due to

increased cache locality. However, given the performance difference is not very large,

we use a 32768 batch size for both 8-core and 64-core tests.

6.5.4 Update Overhead

Once batch-size calibration is performed, we can proceed to update rate impact

comparison. Figure 6.19 presents the impact of update frequency on read-side per-

formance for the various locking primitives. It is performed by running 4 reader and

4 updater threads and varying the delay between updates. We notice that RCU ap-

proches outperforms the per-thread lock approach especially in terms of maximum

updates per second. The former can reach 2 million updates per second while per-
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thread locks can only perform 0.1 million updates per second. Interestingly, on such

workload with 4 tight loop readers, mutexes outperforms the reader-writer lock prim-

itive in all aspects. Furthermore, reader-writer locks seems to show a case of reader

starvation with high updates per second rates.

But while Figure 6.19 presents a fair comparison between the locking primitives,

it presents a non-ideal scenario for RCU. In our attempt to present a comparison
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where all locking primitives perform equivalent work, this figure includes the RCU

pointer exchange overhead. To factor out this overhead, Figure 6.20 shows both ideal

RCU grace-period performance and the equivalent with added pointer exchange. This

shows that it is the pointer exchange that becomes the update-rate bottleneck, not the

grace period. Therefore, in an ideal scenario where pointers updates would be local to

each thread, RCU could be expected to preserve its read-side scalability characteristics

even under frequent updates. Such local updates could be ensured by appropriately

designed list or hash table data structures.

Figure 6.21 shows the update overhead on a 64-core POWER5+, with 32 reader

and 32 updater threads. We can conclude that RCU QSBR and general purpose ap-

proaches reach the highest update rates, even compared to mutexes. This is attributed

to the lower performance overhead for exchanging a pointer compared to the multiple

atomic operations and memory barriers implied by acquiring and releasing a mu-

tex. Mutex-based benchmark performance seems to drop starting at 30,000 updates

per second with 32 updater threads. A similar effect is present with only 4 updater

threads (graph not presented for brevity). Figure 6.19 seemed to show that update

overhead stayed constant even at higher update frequency for 4 updater threads on
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Figure 6.20 Impact of pointer exchange on update overhead, 8-core Intel Xeon, log-
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the Xeon. Therefore, as the number of concurrent updaters increases, mutex behavior

seems to depend on the architecture and on the specific GNU C Library version. Two

approaches seems to be significantly affected by increasing the number of updaters.

The reader-writer lock, where updaters clearly seem to be starved by readers, has a

maximum update rate of 175 updates per second. Per-thread locks are limited to a

maximum update rate of 10,000 updates per second with 32 reader threads.

Finally, Figure 6.22 presents, as previously done for Xeon, how grace-period de-

tection (ideal RCU) compares to RCU grace period with pointer exchange. Therefore,

with appropriately designed data structures, better update locality would ideally lead

to constant updater overhead as the update frequency increases.

6.6 Conclusions

We have presented a set of RCU implementations covering a wide spectrum of ap-

plication architectures. QSBR shows the best performance characteristics, but severely

constrains the application architecture by requiring each reader thread to periodically

pass through a quiescent state. Signal-based RCU performs almost as well as QSBR,
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but requires reserving a signal. Unlike the other two, general-purpose RCU incurs

significant read-side overhead. However, it minimizes constraints on application ar-

chitecture, requiring only that each thread invoke an initialization function before

entering its first RCU read-side critical section.

Benchmarks demonstrate read-side linear scalability of the RCU and per-thread

lock approaches. It also shows that the smallest read-side critical section duration for

which reader-writer locks, RCU and per-thread lock approaches are nearly equivalent in

terms of read-side performance impact grows larger as the number of cores increases.

These benchmarks also show that, by performing memory reclamation in batch, RCU

approaches reach update rates much higher than reader-writer locks, per-thread locks

and mutexes on similar workloads where updates are performed on a shared data

structure. Furthermore, given ideal data structures preserving update cache locality,

RCU approaches are shown to have a constant update overhead as update frequency

increases. Therefore, the upper-bound for RCU update overhead is demonstrated to

be far below lock-based overhead. Furthermore, it is still possible to decrease RCU

update-side overhead even more by designing data structures providing good update

cache-locality.
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Chapter 7

Paper 4: Multi-Core Systems

Modeling for Formal Verification of

Parallel Algorithms

Abstract

Modeling parallel algorithms at the architecture level permits to explore side-

effects of weak ordering performed by modern processors. Formal verification of such

models with model-checking can ensure that algorithm guarantees will hold even in

the presence of the most aggressive compiler and processor optimizations.

This paper proposes a virtual architecture to model the effects of such optimiza-

tions. It first presents the OoOmem framework to model out-of-order memory ac-

cesses. It then presents the OoOisched framework to model the effects of out-of-order

instruction scheduling.

These two frameworks are explained and tested using weakly-ordered memory

interaction scenarios known to be affected by weak ordering. Then, modeling of user-

level RCU (Read-Copy Update) synchronization algorithms is presented. It uses the

virtual architecture proposed to verify that the RCU guarantees are indeed respected.

7.1 Introduction

Formal verification of synchronization primitives for shared memory multiproces-

sor architectures is undoubtedly useful due to the architecture and context depen-

dency of bug occurrence. An algorithm can appear bug-free when used in a large

set of test cases. However, testing is unable to certify that compiler optimizations

done for a different invocation of a synchronization primitive will work as expected.

Portability is also hard to certify with testing, because it would involve testing the
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primitives on all architecture variants.

Our principal motivation is to create detailed architecture-level models taking

into account weak instruction scheduling and memory access ordering able to ver-

ify the user-space RCU (Read-Copy Update) implementations presented in [3]. The

complexity level of these algorithms makes formal verification well worthwhile.

This paper first depicts the modeling challenges, then summarizes the LTL model-

checking principles and introduces modeling of parallel algorithms. This is followed

by a presentation of the frameworks created to accurately model real architectures.

Finally, the RCU library modeling and its verification are presented.

7.2 Modeling Challenges

Modeling multi-core systems for formal verification of parallel algorithm imple-

mentations brings interesting challenges. These are caused by the architecture and

compiler ordering semantics. These challenges come from the presence of:

– compiler-level optimizations,

– execution of nested signal handlers,

on architectures with the following characteristics:

– shared-memory multiprocessor,

– weak memory-ordering,

– pipelined and superscalar,

– out-of-order instruction scheduling.

All these challenges are a direct result of our desire to model algorithms for pro-

duction use. If these models were instead meant to be only applied to prototypes, we

might be strongly tempted to assume a non-optimizing compiler and almost inexistent

sequentially consistent machines to avoid dealing with optimization, out-of-order ex-

ecution and out-of-order memory access effects. We might also be tempted to assume

signal handlers out of existence as a simplification.

Concurrent algorithms have been modeled on weakly ordered systems in the

past [73], and interrupts (similar to signals) have been modeled as well [74]. However,

the methods used in this past work to model weakly-ordered systems can result in

combinatorial explosion of the model. Models specifically covering the x86 [75], as

well as PowerPC and ARM [76] architectures for parallel algorithm verification have

also been proposed in the past. In this paper, we present a more general approach
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that allows the model to more closely follow the architecture behavior than the pre-

vious RCU models and to take into account the weakest ordering amongst multiple

architectures, therefore modeling weak-ordering effects more accurately.

To further reduce the computational requirements of the validation process, we

approximate the properties of the actual hardware, but in all cases modeling weaker

ordering than the actual hardware provides. This weaker-ordering approximation

ensures that any algorithm passing our validation will run correctly on conforming

hardware.

We propose a model representing the interprocessor interactions, which we call

our virtual architecture. In this architecture, each Promela [77] process represents a

processor. To model CISC architectures, complex instructions are divided into micro-

operations, which are then represented as atomic Promela statements. It results

in a RISC architecture, which allows to easily detail micro-operations dependencies.

Through this article, micro-operation and instruction will be used as synonyms, given

those apply to our RISC virtual architecture.

The models proposed here specifically use a data flow representation of each pro-

cessor, where each node repesents a micro-operation and where each arc represents a

data or control dependency between micro-operations. This permits to model accu-

rately all possible micro-operation interleavings as seen from the point of view of their

visible effect outside of the processor. We model the interactions between processors

by creating a cache-memory interaction model.

7.3 Modeling and Model-Checking

This section summarizes the principles of LTL model-checking and presents an

introduction to modeling of parallel algorithms. It constitutes the background on

which the rest of this article is constructed.

7.3.1 LTL Model-Checking

The verification is carried out using Promela [77], a special-purpose modeling

language that performs a full state-space search. This in turn allows all possible exe-

cution histories to be examined for specified classes of errors, including race conditions

and livelock conditions.
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The equivalence between data flow analysis and model-checking of abstract inter-

pretations has been used [78, 79] to model simple sequential programs. Data flow

analysis has also been used to verify properties of concurrent programs [80].

We represent our model in Promela and perform verification of properties ex-

pressed as LTL (Linear Temporal Logic) formulas 1. The model description expresses

atomic statements executed by one or more processes. The Spin verifier [81, 82] trans-

forms the model into a Büchi [83] automaton. The LTL formulas are transformed in

the negation of never-claims suited for verification of the model. The Spin verifier

visits all atomic statements required to validate the LTL claims in all execution orders

allowed by the model. One sequence used to visit atomic statements in a particular

order forms a path.

LTL formalism allows basic logical operators within predicates:

⇒: logical implication,

⇐⇒ : equivalence,

∧: conjunction,

∨: disjunction,

¬: negation.

To reason over the future of paths, temporal operators can be applied to predi-

cates:

G: Temporal operator always (a predicate will always hold),

F: Temporal operator eventually (a predicate must eventually become true),

U: Strong until (will hold until another predicate is true).

Model checking permits to explore all execution scenarios required to verify a

specific LTL property. Unlike simulation-based approaches, the model-checker only

needs to generate the states required to verify the property, rather than performing

an exhaustive state-space exploration. Each Promela process being represented as an

automaton, we can represent the complete state-space generated by parallel processes

by performing the product of these automata.

One major limitation is that LTL model-checking is PSPACE-complete. Reason-

ing about specific predicates to verify, allows limiting the state-space to the subset

1. See the Promela reference for equivalent LTL symbolism http://spinroot.com/spin/Man/

ltl.html

http://spinroot.com/spin/Man/ltl.html
http://spinroot.com/spin/Man/ltl.html
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required to verify the predicates. This is why Spin enhances state-space exploration

with lossless compression techniques based on the characteristics of the claims vali-

dated. For instance, Partial Order Reduction [84] permits to merge states for which

the partial order does not affect the property to verify.

7.3.2 Introduction to Parallel Algorithm Modeling

As an introductory example, let us consider the verification of the busy-waiting

lock primitives, usually known as spinlock, present in the PowerPC and Intel archi-

tectures of Linux kernel 2.6.30.

The spinlock implementation found in the PowerPC architecture is relatively

straightforward: it consists of two states, either 0 or non-zero. It uses the “lwarx”

(Load Word and Reserve Indexed) and “stwcx.” (Store Word Conditional Indexed)

instructions to atomically compare and update the lock value. The store only succeeds

if the memory location has not been updated since the load.

As an example, a Promela model of this locking primitive is presented in Fig-

ure 7.1. Line 1 contains the lock variable definition, followed by a data access refer-

ence count defined in Line 2. Lines 4–17 contain the spin lock primitive. The inline

function in Promela is close to that of the C language, except that such functions in

Promela have type-free arguments, are not permitted to contain declarations, and do

not return any value. Lines 6–16 contain the busy-waiting loop do ... od, stopped

only by the break statement on Line 13 if the variable lock is 0. The skip statement

on Line 10 is an empty statement. It has no effect other than permitting to follow

the Promela grammar. Line 7 begins with “:: 1 ->”, which indicates a condition

always fulfilled. This lets the statements following the “->” execute uncondition-

ally. Line 7 ends with a very important keyword: atomic. It precedes a sequence

of statements, contained within brackets, which is considered as indivisible. They

are therefore executed in a single execution step, similarly to an atomic instruction

executed by a processor. Lines 19–22 contain the unlock function. Lines 24–33 con-

tain the body of the processes, which takes a spinlock, increments and decrements

the reference count, and releases the lock in an infinite loop. Two instances of the

process are run upon initialization by init at Lines 35–39.

This Promela code is represented by the diagram found in Figure 7.2. Each

node represents a Promela statement. A name is added to most nodes to make
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1 byte lock = 0;

2 byte refcount = 0;

3

4 inline spin_lock(lock)

5 {

6 do

7 :: 1 -> atomic {

8 if

9 :: lock ->

10 skip;

11 :: else ->

12 lock = 1;

13 break;

14 fi;

15 }

16 od;

17 }

18

19 inline spin_unlock(lock)

20 {

21 lock = 0;

22 }

23

24 proctype proc_X()

25 {

26 do

27 :: 1 ->

28 spin_lock(lock);

29 refcount = refcount + 1;

30 refcount = refcount - 1;

31 spin_unlock(lock);

32 od;

33 }

34

35 init

36 {

37 run proc_X();

38 run proc_X();

39 }

Figure 7.1 Promela model for PowerPC spinlock

interpretation easier. Each node contains a Promela statement. Arrows connecting

the nodes represent how the model-checker can move between nodes. Some require

conditions to be active, e.g. (lock == 1), to allow moving to the target node. The

STEP++ statements on the arrows represent that the execution counter is incremented.

A concurrent process may run between different steps, but not while STEP stays

invariant. The latter scenario happens in the ATOMIC box, which represents the atomic

sequence of statements.

Safety of this locking primitive is successfully verified by the Spin model-checker by

verifying that the reference count value is never higher than 1. This is performed by

prepending #define refcount_gt_one (refcount > 1) to the model and by using
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skip
UNLOCKED

lock = 0
UNLOCK

ref−−

ref++

TAKE LOCK
lock = 1

TRY LOCK
skip

(lock == 0)
STEP invariant

STEP++
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STEP++

STEP++ STEP++
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(lock == 1)
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Figure 7.2 Diagram representation of PowerPC spinlock model
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the following LTL formula. PowerPC spinlock safety is verified by the LTL claim:

G
(
¬ refcount gt one

)

However, one major downside of this spinlock implementation is its lacks of fair-

ness. A CPU always acquiring the same spinlock in a loop could effectively starve

other CPUs. This can be verified using the following LTL formula:

G
(
F (¬ np )

)

The keyword np has a special meaning: it is true if all system states do not

correspond to progress states. We modify the code from Figure 7.1 to insert such

progress states: this involves separating the process body in two different definitions

to add a progress: keyword within the infinite loop in one of them. Using the Spin

verifier weak fairness option lets it detect non-progress cycles involving more than one

process. This corresponds to starvation of a process by one or more other processes.

Ticket spinlocks used for the Intel spinlock implementation found in Linux cor-

rect the fairness problem identified in the PowerPC architecture. The Promela im-

plementation is omitted due to space considerations, but the state diagram is pre-

sented at Figure 7.3. The new elements added to this graphs are the LOW HALF() and

HIGH HALF() primitives, which select half lower and upper bits of the lock, respec-

tively.

The Spin model-checker verifies that this model is safe and fair, under certain

conditions. Changing the number of bits available for the low and high halves of the

ticket lock as well as the number of processes shows that fairness is only ensured when

the number of processes fits in the number of bits available for each half.

7.4 Weakly-Ordered Memory Framework

7.4.1 Architecture

Modeling out-of-order memory accesses performed by processors at a level consis-

tent with their hardware implementation is important to enable accurate modeling of

side-effects that can be caused by missing memory barriers in synchronization algo-

rithms. The bugs within this category are hard to reproduce, mainly because they are

dependent on the architecture, execution context and timing between the processors.
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Figure 7.3 Diagram representation of Intel ticket spinlock model
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Therefore, testing the implementation might not be sufficient to certify the absence

of bugs.

To model an algorithm including the effects of the memory barriers required on

various architectures, or more importantly lack thereof, we choose to create a virtual

architecture performing the most aggressive memory reordering. The Alpha 21264

seems to be an especially interesting architecture with respect to reordering, given its

ability to reorder dependent loads [85, 86]. It also reorders loads after stores, stores

after loads, loads after loads and stores after stores. Even atomic operations can be

reordered with respect to loads and stores.

The Alpha architecture can reorder dependent loads in addition to other memory

accesses due to the design of its caches. These are divided into banks, which can

each communicate with main memory. If the channel between a bank and memory is

saturated, the updates of the less busy channels could reach their destination before

loads or stores initiated earlier. Such extremely weak ordering can therefore cause

any sequence of loads and stores to different addresses, including dependent loads, to

be perceived in a different order from the point of view of another processor. Indeed,

when memory content changes, in-cache view updates are not guaranteed to reach

the cache-lines in the same order the main memory stores appear.

We name the weak memory ordering part of our virtual architecture OoOmem,

where OoO stands for Out-of-Order. It models the exchanges between CPU cache-

lines and main memory. To model the worst possible case, each variable belongs to a

different cache-line and there is only one cache-line per bank. These cache-lines are

therefore free to be updated (or not) with main memory between each instruction

execution.

Each CPU is modeled as a Promela process. Each variable is represented with

a main memory entry, a per-CPU entry and a per-CPU dirty flag. Operations and

accesses to these memory entries are performed through Promela macros created as

part of the OoOmem framework to facilitate manipulation of the variables. We call

these the “primitives” of the OoOmem framework. For each cache-local variable, the

ooo mem() primitive models the case where it is updated as well as the case where it

is not. This primitive must be called between each cache-line access. This causes all

possible interleaving of exchanges between caches and memory to appear in the set

of generated execution traces.

Explicit memory ordering of loads and stores can be respectively forced by using
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the primitives smp rmb() and smp wmb(). These memory barriers respectively send

the cache-local stores to memory and ensure that all in-memory data is loaded into

the local cache. The per-variable, per-CPU dirty flag makes sure that a given CPU

fetches data that it has recently written from its emulated cache rather than fetching

stale data from main memory.

The primitive write cached var() updates the cache-local version of a variable

with a new value and sets the dirty flag for this variable on the local CPU. The dirty

flag will let ooo mem() and smp wmb() subsequently commit this change to main

memory. In addition, this ensures that neither ooo mem() nor smp rmb() overwrite

the cache-local version before it has been committed to memory.

The read-side equivalent is read cached var(), which loads a cache-local variable

into the local process variables.

Modeling other architectures such as the Intel, PowerPC and Sparc processor

families, which do not permit to reorder dependent loads, only requires replacing the

conditional load part of the ooo mem() primitive by a call to smp rmb(). As a result,

the local cache is unconditionally updated by loading all main memory variables into

the non-dirty local cache-lines. The effects of independent loads reordering done

by these architectures is modeled by the Out-of-order Instruction Scheduling Model

presented in Section 7.5.

Modeling of nested execution contexts, such as interrupt handlers, requires that

the Promela process used to represent the interrupt handler execution shares the

per-CPU data with the Promela process modeling the interrupted processor.

7.4.2 Testing

In order to validate the accuracy of the framework, we use architectural litmus

tests for which results are known. One such litmus test involves processor A per-

forming consecutive updates to a pair of variables, while processor B concurrently

reads these same variables in reverse order. We expect that if the ordering is cor-

rect, whenever processor B sees the updated second variable, it must eventually read

the updated first variable. This is expressed in the following pseudo-code and LTL

formula:
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Pseudo-code modeled:

alpha = 0;

beta = 0;

Processor A Processor B

alpha = 1; x = beta;

smp_wmb(); smp_rmb();

beta = 1; y = alpha;

LTL claim to satisfy:

G
(
x = 1 ⇒ F (y = 1)

)

This model is verified successfully by the Spin verifier. Error-injection is performed

to ensure that the verifier would appropriately generate the erroneous execution traces

if the required memory barriers were missing. This is performed by removing the

smp wmb() from Processor A or smp rmb() from Processor B. Verifying these two

altered models shows the expected errors and execution traces: variables being either

stored to or loaded from memory in the wrong order fails to verify the LTL claim.

7.5 Out-of-Order Instruction Scheduling

Framework

Although the OoOmem framework presented earlier represents exchanges between

cache and memory accurately, it does not reproduce all reordering performed at the

processor level regarding out-of-order micro-operation (RISC instruction) scheduling.

This section explains how we model these effects.

7.5.1 Architecture

Superscalar pipelined architectures leverage instruction-level parallelism by allow-

ing multiple instructions to start concurrently and by reordering instruction comple-

tion. It can, more aggressively, reorder the sequence in which independent instructions

are issued. Speculative execution can also cause execution of instructions before their

result is proven to be needed. Such out-of-order instruction execution can be seen on

the Alpha 21264 [86].
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Our virtual architecture framework for out-of-order instruction scheduling there-

fore encompasses all possible instruction scheduling which can be done by either com-

piler optimizations (lifting, combining reads, re-loading a variable to diminish register

pressure, etc.) or the processor. The weakest scheduling possible is bounded by the

dependencies between instructions. In order to let the verifier explore all possible

execution orders, our virtual processor framework, OoOisched, provides:

– an infinite number of registers,

– a pipeline with an infinite number of stages,

– a superscalar architecture able to fetch and execute an infinite number of in-

structions concurrently,

– and the ability to perform speculative instruction execution when they have no

side-effect on cache.

As in the OoOmem framework, one Promela process represents one processor.

A key element of this framework is to have a compact instruction execution state

and dependency representation. We choose to use a per-processor set of tokens to

represent the dependencies with a single token per instruction. Tokens are produced

by executing instructions and typically cleared only at the end of the instruction

sequence. The conditions required to activate an instruction are represented by a set

of tokens. Each token can be represented by a single bit.

As an example, the dependencies of the test-case presented in Section 7.5.2 are

modeled in the Promela listing in Figure 7.4 and illustrated in Figure 7.5.

An instruction scheduling loop tests for every instructions dependency constraints

to execute them. Execution of instruction is non-deterministic: when the dependen-

cies of multiple instructions are met, any one of them may fire, but does not have

to. It therefore explores all the possible execution orderings fitting within the depen-

dency constraints. It proceeds until the end of the loop, which consists in executing

the last instruction of the sequence. This last instruction clears all the tokens and

breaks the instruction scheduling loop. When the bit allocated for an instruction is

enabled, it inhibits its execution and enables its dependent instructions. The state of

each CPU’s execution is kept in a per-process data structure containing the current

execution state tokens.

The macro CONSUME_TOKENS(tokens, enable, inhibit) is presented in the Pro-

mela model in Figure 7.4. It is used as trigger to execute an instruction. The param-

eter tokens is the token container of the current processor. The scheduler is allowed
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to execute an instruction only if all the enable tokens are active and all the inhibit

tokens are inactive. Its role is to check for pre-conditions for instruction execution,

but does not clear any token.

The macro PRODUCE_TOKENS(tokens, prod) adds tokens identified by prod to

tokens. It is typically used at the end an instruction execution by producing its own

token. Finally, CLEAR_TOKENS(tokens, clear) clears all the specified CPU tokens.

It is typically used after the last instruction of the scheduling loop, but can also be

used to partially clear the token set to produce loops.

The diagram representing the Promela model in Figure 7.5 represents each in-

struction by a node. White arrows represent unmet dependencies and black arrows

correspond to dependencies met. Colored nodes are those currently candidate for

execution: all their dependencies are met, which means that all tokens they consume

are enabled, and all the tokens that inhibit their execution are cleared. The column

on the left represent the tokens associated with each instruction.

We choose this representation of the data and control flow rather than more

classic token-based models like Petri networks [87] or coloured Petri networks [88] to

allow easy injection of faults in the model. This would be cumbersome to do with a

classic representation where one instruction would produce a token that would be later

consumed by a following instruction. For instance, removing a read barrier or write

barrier from the model would require to completely modify the dependency graph

of the following instructions to make sure they now depend on prior instructions.

Failure to do so would create an artificial synchronization barrier which would not

model the error injection correctly. Since the token model provides the complete list of

instruction dependencies, errors can be injected by enabling the token corresponding

to the instructions to disable before entering the instruction scheduling loop. The

effect is the inhibition of the instruction and satisfaction of all dependencies normally

met when this instruction is executed.

Given our virtual architecture models all possible sequences of code execution al-

lowed by the data dependencies, only a few specific issues must be addressed to make

sure compiler optimizations are taken into account. In our framework, a temporary

per-process variable, corresponding to a processor register, should never be updated

concurrently by multiple instructions. SSA (Static Single Assignment) [89] is an in-

termediate representation typically used in compilers where each variable is assigned

exactly once. Using such representation for registers would ensure to have no more
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than a single instruction using a temporary register, but this would cost additional

state-space. Given this resource is limited, we re-use registers outside of their liveness

region. There are only two cases where we expect the compiler to re-use the result of

loads. The first case is when the compiler is instructed to perform a single volatile

access to load the variable to a register. The second case is when an explicit compiler

barrier is added between the register assignment (load from cache) and register use.

In all other cases, re-use of loaded variables will be taken into account by performing

the two loads next to each other due to speculative execution (prefetching) support

in the scheduler.

One limitation of this framework is that it adds an artificial compiler barrier

and core synchronization between consecutive instruction scheduler executions. This

would not take into account side-effects caused by scheduler execution within a loop.

This is caused by the instruction’s inability to cross the artificial synchronization

generated by the last instruction executed at the end of the scheduler loop. This last

instruction is required to clear all tokens before the next execution. Such effect can

be modeled by unrolling the loop.

Because the token container is already occupied by the outermost execution of the

scheduler, recursion is also not handled by the framework. A supplementary container

could be used to model the nested execution. However, using a different instruction

scheduler for the nested context would fail to appropriately model interleaving of

instructions between different nesting levels. Therefore, nested calls must be expanded

into the caller site.

7.5.2 Testing

Before introducing the more complex RCU model, we present a test model for the

OoOisched framework. This model is based on both the OoOisched and OoOmem

frameworks. It models an execution involving two processors and two memory lo-

cations. In this model, Processor A successively writes to alpha and reads beta.

Processor B successively writes to beta and then reads alpha. This verifies that at

least one processor reads the updated variable. This is shown in the following pseudo-

code. Dependency constraints applied on instructions executed by Processor A are

illustrated by Figure 7.5.
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Pseudo-code modeled:

alpha = 0;

beta = 0;

x = 1;

y = 1;

Processor A Processor B

alpha = 1; beta = 1;

smp_mb(); smp_mb();

x = beta; y = alpha;

LTL claim to satisfy:

G (x = 1 ∨ y = 1))

This model is successfully verified by the Spin verifier. Error-injection is performed

to ensure that the verifier would appropriately generate the erroneous execution traces

if the required memory barriers were missing. This is performed by either:

– completely removing the smp mb(),

– removing only the smp rmb() part of the barrier,

– removing only the smp wmb() part of the barrier,

– removing the implicit core synchronization provided by the smp mb() semantics,

which leaves the reads and the writes free to be reordered.

Verifying these altered models shows the expected errors and execution traces,

where the read or write instructions being reordered fails to verify the LTL claims.

Removing core synchronization from the model presented in Section 7.5.2 permits

verifying its behavior when injecting errors. The diagram presented in Figure 7.6

shows a snapshot of instruction execution with core synchronization removed. It

shows that two instructions are candidate for execution: either alpha = 1 or x =

beta. It this case, the store and load can be performed in any order by the instruction

scheduler.

As an example of the result of an error-injection, we present an execution trace

generated by the Spin model-checker. We use the test model presented in Figure 7.4

with core synchronization removed. This partial execution trace excludes the empty

execution and else-statements for conciseness. Some statements are also folded.

Lines 6–8 show the instruction scheduler from processor B scheduling the two first

instructions of this processor: production of the initial token and error-injection by
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1 #define PA_PROD_NONE (1 << 0)

2 #define PA_WRITE (1 << 1)

3 #define PA_WMB (1 << 2)

4 #define PA_SYNC_CORE (1 << 3)

5 #define PA_RMB (1 << 4)

6 #define PA_READ (1 << 5)

7

8 byte pa_tokens;

9

10 active proctype processor_A()

11 {

12 PRODUCE_TOKENS(pa_tokens, PA_PROD_NONE);

13

14 do

15 :: CONSUME_TOKENS(pa_tokens,

16 PA_PROD_NONE, PA_WRITE) ->

17 ooo_mem();

18 WRITE_CACHED_VAR(alpha, 1);

19 ooo_mem();

20 PRODUCE_TOKENS(pa_tokens, PA_WRITE);

21 :: CONSUME_TOKENS(pa_tokens,

22 PA_WRITE, PA_WMB) ->

23 smp_wmb();

24 PRODUCE_TOKENS(pa_tokens, PA_WMB);

25 :: CONSUME_TOKENS(pa_tokens,

26 PA_WRITE | PA_WMB,

27 PA_SYNC_CORE) ->

28 PRODUCE_TOKENS(pa_tokens, PA_SYNC_CORE);

29 :: CONSUME_TOKENS(pa_tokens,

30 PA_SYNC_CORE, PA_RMB) ->

31 smp_rmb();

32 PRODUCE_TOKENS(pa_tokens, PA_RMB);

33 :: CONSUME_TOKENS(pa_tokens,

34 PA_SYNC_CORE | PA_RMB,

35 PA_READ) ->

36 ooo_mem();

37 pa_read = READ_CACHED_VAR(beta);

38 ooo_mem();

39 PRODUCE_TOKENS(pa_tokens, PA_READ);

40 :: CONSUME_TOKENS(pa_tokens,

41 PA_PROD_NONE | PA_WRITE |

42 PA_WMB | PA_SYNC_CORE |

43 PA_RMB | PA_READ, 0) ->

44 CLEAR_TOKENS(pa_tokens,

45 PA_PROD_NONE | PA_WRITE |

46 PA_WMB | PA_SYNC_CORE |

47 PA_RMB | PA_READ);

48 break;

49 od;

50 }

Figure 7.4 Out-of-order instruction scheduling and memory frameworks promela
test code, Processor A
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Figure 7.5 Instruction dependencies of out-of-order instruction scheduling and mem-
ory framework test
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Figure 7.6 Instruction dependencies of out-of-order instruction scheduling and mem-
ory framework test (error injection)
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producing the core synchronization token ahead of the instruction scheduler execu-

tion.

6: proc 1 (CPU_B) line 252 "mem.spin" (state 2)

[pb_tokens = (pb_tokens|(1<<PA_PROD_NONE))]

8: proc 1 (CPU_B) line 261 "mem.spin" (state 3)

[pb_tokens = (pb_tokens|(1<<PA_SYNC_CORE))]

Line 10 presents the trigger permitting activation of the write instruction.

10: proc 1 (CPU_B) line 265 "mem.spin" (state 4)

[((!((pb_tokens&(1<<PA_WRITE)))

&& ((pb_tokens&(1<<PA_PROD_NONE))

==(1<<PA_PROD_NONE))))]

Lines 19–21 show processor B updating its alpha and beta cache-view from mem-

ory. Processor B performs a random cache update. In this execution trail, it loads

alpha and beta into its local cache.

19: proc 1 (CPU_B) line 125 "mem.spin" (state 30)

[(!(cache_dirty_alpha[_pid]))]

19: proc 1 (CPU_B) line 125 "mem.spin" (state 31)

[cached_alpha[_pid] = mem_alpha]

21: proc 1 (CPU_B) line 126 "mem.spin" (state 41)

[(!(cache_dirty_beta[_pid]))]

21: proc 1 (CPU_B) line 126 "mem.spin" (state 42)

[cached_beta[_pid] = mem_beta]

At Line 23, processor B writes to its cache view of beta and sets the matching

dirty flag.

23: proc 1 (CPU_B) line 267 "mem.spin" (state 53)

[cached_beta[_pid] = 1]

23: proc 1 (CPU_B) line 267 "mem.spin" (state 54)

[cache_dirty_beta[_pid] = 1]

A succinct high-level summary of the execution trail follows:

CPU B: writes to in-cache beta

CPU A: writes to in-cache alpha

CPU A: smp_rmb()

CPU B: smp_wmb()

CPU B: smp_rmb()

CPU B: reads alpha from its cache

CPU A: smp_wmb()

CPU A: reads beta from its cache
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At the bottom of the execution trail, the state for which the LTL condition did

not hold is shown:

spin: trail ends after 161 steps

#processes: 1

mem_alpha = 1

cached_alpha[0] = 1

cached_alpha[1] = 0

cache_dirty_alpha[0] = 0

cache_dirty_alpha[1] = 0

mem_beta = 1

cached_beta[0] = 1

cached_beta[1] = 1

cache_dirty_beta[0] = 0

cache_dirty_beta[1] = 0

x = 0

y = 0

pa_tokens = 31

pb_tokens = 63

161: proc 0 (CPU_A) line 218 "mem.spin" (state 239)

2 processes created

At that point, both pa read and pb read contain 0. By examining the execu-

tion trace, we understand that this behavior is made possible by letting processor A

execute its read memory barrier before the write memory barrier. This is allowed

because the removed core synchronization permits reordering these unrelated types

of barriers.

Therefore, even given the known model limitations regarding loops and nesting,

the instruction scheduling and weakly-ordered memory architecture models are suffi-

cient to model RCU algorithms, as is shown in Section 7.6.

7.6 Read-Copy Update Algorithm Modeling

Read-Copy Update (RCU) is a synchronization primitive allowing multiple readers

of a data structure to execute concurrently with extremely low-overhead [3]. Its main

characteristic is to provide linear read-side scalability as the number of processor

increases. It performs this by allowing multiple copies of a data structure to exist at

the same time. In a period of time called grace period, each processor is allowed to see

a different copy of the data structure. The RCU synchronization guarantees specify a

lower bound to the duration of the grace period, after which no further references to

old copies exist, so that the underlying memory becomes reclaimable.
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The main motivation for validating the RCU algorithms is their complexity level.

These algorithms are parallel and imply inconsistent views between processors at a

specific point in time. Also, because RCU’s read-side primitives contain no standard

mutual exclusion primitives, memory ordering must be performed by these same RCU

primitives.

This section presents the model we created to verify if the grace-period and pub-

lication guarantees are satisfied by two RCU synchronization algorithms proposed in

paper [3]: General-Purpose RCU and Low-Overhead RCU Via Signal Handling. It

also verifies that both updater and readers always progress. We first describe the

general RCU model, which is subsequently derived into a signal-based memory barrier

model. We choose the Promela language to express the model based on prior success-

ful modeling of low-level synchronization primitives with this language [73, 74]. Our

motivation for using the Spin model-checker comes mainly from its level of maturity

(it is available freely since 1991) and stability. Using the Promela syntax, which is

close to C, makes it straightforward for C programmers translate C code into models.

The model code uses precompiler directives to select architecture behavior and to

perform error injection. The model consists of 1300 lines of Promela code.

A schematic for the high-level structure of an RCU-based algorithm is shown in

Figure 7.7. An RCU grace period is informally defined as any time period such that

all RCU read-side critical sections in existence at the beginning of that period have

completed before its end.

Here, each box labeled “Reads” is an RCU read-side critical section that begins

with rcu read lock() and ends with rcu read unlock(). Each row of RCU read-side

critical sections denotes a separate thread, for a total of four read-side threads. The

two boxes at the bottom left and right of the figure denote a fifth thread, this one

performing an RCU update.

This RCU update is split into two phases, a removal phase denoted by the lower left-

hand box and a reclamation phase denoted by the lower right-hand box. These two

phases must be separated by a grace period, which is determined by the duration of the

synchronize rcu() execution. During the removal phase, the RCU update removes

elements from the data structure (possibly inserting some as well) by issuing an

rcu assign pointer() or equivalent pointer-replacement primitive. These removed

data elements will not be accessible to RCU read-side critical sections starting after

the removal phase ends, but might still be accessed by RCU read-side critical sections
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Figure 7.7 Schematic of RCU grace period and read side critical sections

initiated during the removal phase. However, by the end of the RCU grace period,

all of the RCU read-side critical sections that might be accessing the newly removed

data elements are guaranteed to have completed, courtesy of the definition of grace

period. Therefore, the grace-period guarantee ensures that the reclamation phase,

beginning after the grace period ends, can safely free the data elements removed

previously.

The publication guarantee ensures that data accessed by the read-side through

the rcu dereference() primitive (always executed between rcu read lock() and

rcu read unlock()) will see changes made by the write-side before publication of

the RCU pointer by rcu assign pointer.

The model which abstracts the RCU algorithm has one updater and one reader

process. It is based on the OoOmem and OoOisched frameworks to verify that it

satisfies the above-mentioned grace-period and publication guarantees when executed

on a weakly-ordered processor and memory architecture. In addition to global and

per-thread RCU synchronization variables, the data structures required are a pointer
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to the current RCU data and an arena: a pool of free memory used by the memory

allocator. All these data structures are modeled with the OoOmem framework. The

arena data is initially poisoned.

The updater process performs two loops which first update data in a newly allo-

cated arena entry from the OoOmem model and then publishes a pointer to the new

entry into another shared OoOmem variable using a modeled rcu assign pointer()

primitive. At the same time the updater stores the new pointer, the updater loads

the previous value into its local registers. It is reclaimed after a grace period passes.

The modeled synchronize rcu() primitive is used to wait for such grace period to

reach a quiescent state. After that point, the arena entry corresponding to the old

pointer can be poisoned.

Memory reclamation is modeled by writing poison data into the arena entry. In a

valid model, the read-side should never see such poison value in the memory location

it reads. This method is used to detect incorrect publication and inappropriate use

of reclaimed memory.

The updater loops do not need to be unrolled because the synchronize rcu()

primitive contains full memory barriers. Poisoning alone could spill in the next loop

and overlap with stores to the newly allocated arena entry, but late-arriving poisoning

stores are not relevant to the characteristics we validate.

The reader is modeled as one process entering two read-side critical sections. Each

consists of a lock and unlock pair, between which are placed a rcu dereference()

and a read of the corresponding arena entry. The first critical section holds two

nested read locks. The second critical section holds a single nesting-level read lock.

Given the outermost code of successive read lock/unlock can spill on each other, such

spilling caused by reordering, prefetching and optimizations is modeled by those two

successive critical sections. The data read within each critical section is saved to

the globally visible data read first and data read second variables to be used for

verification.

The guarantees provided by the RCU algorithm are verified with the LTL formula

presented in (7.1), which makes sure the reader never loads a poisoned arena entry.

The Spin model-checker checks for states which do not verify this claim. It generates

an error and presents a counter-example consisting of a faulty execution trace when

the claim is not satisfied.
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
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data read first 6= POISON

∧

data read second 6= POISON




 (7.1)

To minimize the risk of modeling errors, we augment our models with error-

injection regression tests. For each of the characteristic we need to validate, we create

a model alteration which is known not to satisfy the characteristic. This permits to

not only verify that the guarantees are sufficient to ensure model correctness, but also

that the modeled guarantees are actually required, e.g. if a predicate is not satisfied,

an error will occur.

Remove smp mb(): The first error injected is to remove the memory barriers

surrounding synchronize rcu(). This is known not to meet the grace period guar-

antee, as it would let the pointer update spill over the whole grace period into the

following quiescent state. This would therefore let poisoning occur before the pointer

is updated.

Remove smp wmb(): The second error we inject is to remove the write memory-

barrier from the rcu assign pointer() primitive. This is known not to meet the

publication guarantee, because the pointer could then be published before the newly

allocated arena entry is populated with non-poisoned information.

Remove smp rmb(): The third error is injected by removing the read memory-

barrier from the rcu dereference() primitive. On Alpha (and only on Alpha), this

is known not to meet the publication guarantee because the reader’s cache could be

populated with the new pointer before the arena entry is updated. We therefore

expect the reader to see poisoned data.

Single grace-period phase: The fourth error-injection test consists in altering

synchronize rcu() to only perform a single grace-period phase. This is expected

not to meet the grace period guarantee by allowing a race condition between a reader

and two consecutive updates.

The reader code is modeled in an infinite loop to verify updater’s progress when

facing a steady flow of readers. The reader and updater progress are tested in two

different runs:

– For reader progress, a single progress statement is added between each reader

loop execution.

– On the updater-side, progress statements are added in each update loop and an
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infinite loop containing a progress statement is added at the end of the updater’s

process execution.

The weak fairness Spin option ensures that non-progress errors are flagged only

for cycles containing at least one statement from each process, but not containing

any special progress labels.

Remove smp mb() from busy-loop: The fifth error injected is to remove the

memory barrier placed in the updater’s busy loop waiting for a grace period phase

to complete. This injects an updater progress error by allowing the updater’s cache

to never read the eventually updated reader nesting counter. On real systems, the

bounded size of the buffers between the CPU, cache and memory interconnects ensures

that the remote nesting counter is updated, but given our virtual architecture model

assumes infinitely-sized buffers, an explicit memory barrier must be placed in the

busy-loops to ensure data is being read.

The signal-based memory barrier is modeled as a derivation of the general model

by changing the updater-side memory barriers for a primitive which sends a signal and

waits for memory barrier execution from the reader-side, all this between two memory

barriers. On the read-side, the memory barriers are modeled by verifying, between

each instruction execution, if the execution status tokens appears to be in sequential

execution order. If execution appears in sequential order between two instructions,

the reader process chooses to either ignore any memory barrier request or to service

any number of memory barrier requests by issuing memory barriers and informing

the updater-side of the completion.

Due to the added complexity and therefore state-space size explosion, modeling of

read-side in signal handers nesting over the updater and reader thread is performed

using a different model which assumes a sequentially ordered architecture with the

OoOmem weakly-ordered memory framework. Given that signal handlers have the

property to order the core execution before and after they execute, it allows using the

safety and progress characteristics proven with the OoOisched framework as lemma.

7.6.1 State-Space Compression

Given that the state-space required to perform the verification can increase quickly,

the following state-space compression techniques were used to perform the verifica-

tions.
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Running the Spin model-checker to verify specific LTL formulas transformed into

never claims permits checking for safety while performing Partial Order Reduction [84].

This model-checking approach discards relative statement ordering which does not

matter for the property to verify. This reduces the state-space size tremendously

with a very small performance impact, while preserving the safety and liveness prop-

erties of LTL.

Accepting a small performance impact (perceived slowdown of a factor 1.3 on

our models), the COLLAPSE compression [82] can be used to reduce the state-space

required to perform verification by separating the state into sub-components. The

compression comes from the fact that one state configuration for a specific process

tends to reoccur in different global data and other process states. It uses separate

descriptors as key to encode and search global data objects and data objects belonging

to each process. Each time the same process state is encountered, it can be encoded

with the same per-process state descriptor instead of saving the whole state, which

saves precious state-space. A global state descriptor, used to identify the overall state,

therefore consists of a state vector made of the global and per-process descriptors.

This lossless compression preserves the complete state-space.

Another possible lossless compression technique, the minimized DFA (Determin-

istic Finite Automaton) encoding [82], can further diminish the state-space size by

leveraging the high degree of similarity between the different states. It represents the

state-space using an encoding similar to BDDs (Binary Decision Diagrams) [90, 91].

However, this compression technique incurs a prohibitive performance impact. Our

tests on large models show that state-space exploration is about 10 times slower.

Given that the non-compressed execution of some verifications already takes about

24 hours, the computation time required for DFA compression is considered to be

beyond our available computation time resources.

7.6.2 RCU Model-Checking Results

This section presents the Spin model-checker results for three models: the general

purpose user-space RCU model, the signal-based RCU model and the modeling of signal-

handler read-side. Test run results are presented along with the resources required

to perform the verification. These verifications are performed on a Intel Core2 Xeon

2.0 GHz with 16 GiB RAM.
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The only test result we really care about is whether the verification succeeds

or fails. For the unaltered model and for progress verifications, the LTL claim or

progress property are expected to hold. Such successful verification are denoted as

PASS. For each error-injection run presented in Section 7.6, the expected result is

that the model-checker should detect the injected error, denoted as INJECT. The

notation FNEG would indicate that the model-checker was blind to an injected error.

This constitutes a “false negative”. These are not errors as such, as not every bug

necessarily results in a failure on every architectures modeled. Finally, the notation

FAIL indicates that the model-checker detected a bug in the algorithm.

Additional information about the time and memory required to run these verifi-

cations is only provided to show the amount of computational resources needed for

such verification. The only requirement is that execution time and memory used fit

within our available resource limits.

Tables 7.1 and 7.2 present the result of the general-purpose RCU model-checking

using the Alpha and Intel/PowerPC virtual architectures, respectively. The safety

and progress verifications are successful, and all error-injections generate expected

errors, except one: on the Intel/PowerPC architecture, no error is generated when

removing the smp rmb() on the read-side. This shows that no read barrier is required

on these architectures due to the fact that dependent loads are not reordered.

Table 7.1 General-purpose RCU verification results for the Alpha architecture

Model PASS/FAIL Memory Time

Regression Test INJECT/FNEG (GiB)

Unaltered model (safety) PASS 1.06 2h33m

Remove smp mb() INJECT 1.07 1h06m

Remove smp wmb() INJECT 0.96 1h14m

Remove smp rmb() INJECT 0.52 9m

Single grace-period phase INJECT 0.66 26m

Reader progress PASS 1.76 10h38m

Updater progress PASS 1.76 9h23m

Remove loop smp mb() INJECT 0.47 1m

Table 7.3 presents the verification result of the signal-based RCU model for the

Alpha virtual architecture. This verification ensures signal-based memory barriers
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Table 7.2 General-purpose RCU verification results for the Intel/PowerPC architec-
tures

Model PASS/FAIL Memory Time

Regression Test INJECT/FNEG (GiB)

Unaltered model (safety) PASS 0.82 4m

Remove smp mb() INJECT 1.96 16m

Remove smp wmb() INJECT 0.79 5m

Remove smp rmb() FNEG 0.82 6m

Single grace-period phase INJECT 0.61 1m

Reader progress PASS 1.28 23m

Updater progress PASS 1.28 23m

Remove loop smp mb() INJECT 0.47 0m

provide the memory ordering guarantees and that no livelock nor deadlock can occur.

Progress verification requires to use the COLLAPSE Spin option to compress the state-

space size. It takes 3.5 days to complete the updater progress verification. To reduce

the required CPU time, the reader progress and the updater progress error-injection

are performed on a simplified read-side model with only a single, non-nested, critical

section. Updater progress has also been verified using this simpler model and resulted

in a successful progress verification.

Table 7.3 Signal-based RCU verification results for the Alpha architecture

Model PASS/FAIL Memory Time

Regression Test INJECT/FNEG (GiB)

Unaltered model (safety) PASS 5.21 1d14h18m

Remove smp mb() INJECT 0.59 13m

Remove smp wmb() INJECT 5.17 1d14h33m

Remove smp rmb() INJECT 1.20 2h43m

Single grace-period phase INJECT 3.09 5h45m

Reader progress PASS 0.89 2h02m

Updater progress PASS 11.73 4d15h13m

Remove loop smp mb() INJECT 0.472 1m
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As in the Alpha signal-based RCU verification, Intel/PowerPC model verification

require to use the COLLAPSE compression to fit in the available memory. Here we

notice that the test execution time for each progress verification is approximately 4

hours and uses about 10 GiB of memory. As in the general purpose RCU model, the

smp rmb() removal does not cause any error on Intel/PowerPC because the architec-

ture does not reorder dependent loads.

Table 7.4 Signal-based RCU verification results for the Intel/PowerPC architectures

Model PASS/FAIL Memory Time

Regression Test INJECT/FNEG (GiB)

Unaltered model (safety) PASS 6.98 1h43m

Remove smp mb() INJECT 1.18 4m

Remove smp wmb() INJECT 6.98 1h42m

Remove smp rmb() FNEG 6.98 1h45m

Single grace-period phase INJECT 4.28 16m

Reader progress PASS 10.08 4h18m

Updater progress PASS 9.88 4h18m

Remove loop smp mb() INJECT 0.58 3m

Modeling of read-side signal handler nested over a reader thread is presented

in Table 7.5. This model executes a read-side critical section in a signal handler

interrupting a reader thread. We proceed to this verification to model a read-side

critical section in a signal handler, which generates execution traces where a nested

signal handler could deadlock with an interrupted process, if the signal handler would

busy-loop waiting for the interrupted process.

Table 7.6 is the results obtained by modeling an interrupting read-side signal

handler critical section nested over the updater thread. It presents an interesting

result: given all read-side critical sections are contained within signal handlers nested

over the updater, no memory barrier is required to ensure correctness because no

cache-line exchange is required. In fact, only a single process is executing.

For each of the unaltered models checked, model coverage includes all of the RCU

model lines, but excludes some OoOmem model operations which are not useful in

some contexts. For instance, the OoOmem “random” store to memory will never be
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Table 7.5 General-purpose RCU signal-handler reader nested over reader verification
(no instruction scheduling)

Model PASS/FAIL Memory Time

Regression Test INJECT/FNEG (GiB)

Unaltered model (safety) PASS 4.35 10m

Remove smp mb() INJECT 1.60 5m

Remove smp wmb() INJECT 0.78 2m

Remove smp rmb() INJECT 1.60 2m

Single grace-period phase INJECT 0.57 0m

Reader progress PASS 9.21 1h56m

Updater progress PASS 9.15 1h03m

Remove loop smp mb() INJECT 0.51 0m

Table 7.6 General-purpose RCU signal-handler reader nested over updater verifica-
tion (no instruction scheduling)

Model PASS/FAIL Memory Time

Regression Test INJECT/FNEG (GiB)

Unaltered model (safety) PASS 0.47 0m

Remove smp mb() FNEG 0.48 1m

Remove smp wmb() FNEG 0.47 1m

Remove smp rmb() FNEG 0.47 0m

Single grace-period phase FNEG 0.47 0m

Reader progress PASS 0.47 1m

Updater progress PASS 0.47 1m

Remove loop smp mb() FNEG 0.47 1m

executed if a process never writes into a given variable. Error injection runs do not

need to visit all the state space because they stop after the first error encountered.

Therefore, these self-testing runs do not need to provide complete coverage.
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7.6.3 RCU Verification Discussion

Results presented in Section 7.6.2 demonstrate that we were able to successfully

verify the RCU algorithm models in various execution scenarios with affordable com-

putation resources. The error-injection tests further demonstrate that the model is

able to detect defects that do not respect the RCU guarantees.

In these tests, the number of updater has been limited to one given we protect

updater critical sections using a mutual exclusion primitive already expected to be

valid. The number of reader is also fixed to one because the updater waits, in turn,

for each reader one after the other. The algorithm therefore does not contain any

reader-reader data or control dependency.

As expected, model of the read-side signal handler nested over a RCU reader suc-

ceeds because the RCU read-side is executed with O(1) computational complexity,

which implies that it never busy-loops.

The simplified read-side in signal handler model does not perform instruction

execution reordering. Given the proof provided by the previous verifications, the

nested signal handler execution can be modeled as being serialized with the rest

of the interrupted code because the operating system is called before and after the

signal handler. The OoOmem model is however still used to appropriately take the

out-of-order memory effects into account. This models the Alpha virtual architecture,

which is a superset of the Intel/PowerPC virtual architecture, given it allows weaker

memory ordering.

Verification of interrupting read-side signal handler critical section nested over

the updater thread interestingly shows that the read-side signal handler can nest over

the updater without causing progress error (no livelock nor deadlock). The single

grace-period phase test shows no error. This can be explained by the fact that the

execution trace which requires two grace-period phases involves the reader seeing two

updater updates. This execution trace is impossible here because the updater is being

interrupted by the nested read-side signal.

Error-injection tests have been very useful to ensure model completeness. For

instance, trying the test-case presented in Section 7.5.2 on theOoOmemmodel showed

its limitations. Changing the smp mb() into consecutive smp rmb() and smp wmb()

(which are free to be reordered) did not produce the expected error. This showed

that we needed to model out-of-order instruction scheduling to properly represent

this class of CPU instruction reordering effects, effectively leading to the creation of
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the OoOisched model.

Another example where error-injection has been useful happened during the OoO-

isched-based RCU model creation. The OoOisched framework being based on an in-

struction scheduling loop, we can only use the model coverage information provided

by Spin as indication that statements have been reached at least once, but it tells

nothing about the execution orders visited. Instruction dependency implementation

errors, which inhibited execution of some instructions incorrectly, were identified with

the help of these error-injection tests.

We also created a model for uniprocessor execution of the RCU algorithm. The

code generated for this model has the particularity that all memory barriers are

replaced by compiler barriers, except smp read barrier depends(), on Alpha, which

is completely removed. In this model, a single processor cache is used by both the

reader and the writer processes. No communication is required with main memory,

given all accesses are going through the locally cached variables. Therefore, out-

of-order memory updates are disabled. The results of the tests, not presented here

for conciseness, show that simply using compiler barriers suffice to provide RCU safe

against thread preemption on a uniprocessor system.

7.7 Framework Discussion

Compared to models used previously for RCU verification, the proposed framework

covers more micro-architecture side-effects. This includes, for instance, effects of data

prefetch. Moreover, the state-space size required by our framework has been shown

to be manageable on current computers when modeling complex synchronization

algorithms such as RCU. This shows that it should be applicable to other parallel

algorithms with similar complexity level.

One of the major improvements of this modeling framework is to allow a more

regular description of algorithms. It removes the need to account for low-level ar-

chitecture side-effects directly in the algorithm model by providing artefacts which

encapsulate the architecture behavior. This framework therefore minimizes the risk

of modeling error.

Due to its ability to model the weakest ordering possible, altering the framework

to model memory barriers specific to architectures such as Alpha, Intel, PowerPC and

even Sparc is straightforward. Modeling specific architectures can by done by creating
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the synchronization instructions implemented in a given architecture and modifying

the behavior of the cache-memory synchronization to match the architecture behavior.

For instance, the PowerPC “lwsync” instruction 2 can be modeled as two instructions.

The first instruction needed is a smp rmb() which depend on all prior loads, and upon

which depends all following loads and stores. The second instruction is a smp wmb(),

which depends on all prior stores, but upon which only the following stores depend.

Such flexibility in modeling the low-level synchronization primitives become very

handy to model the Sparc “membar” primitive, which permits to only order either,

some or all of:

– stores vs stores,

– stores vs loads,

– loads vs loads or

– loads vs stores.

In the case of the RCU algorithm model, we only need full memory barriers.

We are aware of one recently proposed compiler optimization not handled by our

model. Value-speculative optimizations [92, 93] performed by the compiler could

cause dependent loads to be performed out-of-order if the first data to read is spec-

ulated, which would permit to read dependent data in the wrong order. These

dependency-breaking optimizations are outside of the proposed model scope. Work

in progress for upcoming versions of the C++ standard include compiler mechanisms

designed to selectively suppress value speculation [94, 95, 96].

7.8 Conclusion

To accurately model the low-level multiprocessor interactions at the architecture-

level, we created a virtual architecture performing the most aggressive optimizations

still meeting the instruction inter-dependencies. Memory access ordering is expressed

by modeling a processor cache with extremely weak ordering. A model of instruction

dependencies deals with the effects of out-of-order instruction execution.

Formal verification of both general-purpose RCU and signal-based RCU has been

performed on this virtual architecture, therefore modeling the effects of out-of-order

2. lwsync - Lightweight synchronization: Orders loads with respect to subsequent loads and
stores. Orders stores with respect to other stores. Does not order stores with respect to subsequent
loads.
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instruction execution and out-of-order memory accesses. The high complexity-level

of these RCU algorithms caused by the high degree of parallelism and extremely re-

laxed consistency semantics can easily overwhelm human conception. This is why

validation at the lowest level of interprocessor interaction is needed to certify that

these algorithms perform the expected synchronization.

Future work in this area could involve modeling value-speculative compiler opti-

mizations, to enable detection of ordering problems which can occur when dependent

memory accesses can be reordered dependency-breaking compiler optimizations.

Modeling these algorithms on this virtual architecture lets us demonstrate that all

invocations of this algorithm primitives will behave appropriately and that porting it

to yet unforeseen architectures will work as expected.
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Chapter 8

Complementary Results

This chapter presents supplementary research results not discussed in the core

thesis articles. This includes discussion of the work performed on Kernel Markers,

Tracepoints and Immediate Values, as well as presentation of latency benchmarks,

real-time determinism impact discussion and formal verification of the LTTng tracer.

8.1 Kernel Markers

The article “LTTng: Tracing across execution layers, from the Hypervisor to user-

space” [28] refers to Linux Kernel Markers, created as part of this research, and now

integrated in the mainline Linux kernel.

The initial motivation to create this static instrumentation infrastructure is be-

cause the Kprobe mechanism, a predating dynamic instrumentation mechanism, adds

a large performance overhead because it depends on breakpoints. Section 5.5.8 pre-

sented the benchmarks justifying the choice of static over dynamic instrumentation,

mainly due to its lower overhead.

Comparing static instrumentation with Kprobe-based instrumentation found in

SystemTAP also provides a second motivation to use static instrumentation: its abil-

ity to follow more easily source code changes in an open source project like the Linux

kernel.

This instrumentation mechanism allows us to enable the instrumentation of the

Linux kernel at the source-code level. It consists essentially of a C preprocessing macro

which adds, in the instrumented function, a branch over a function call. By doing

so, neither the stack setup nor the function call are executed when instrumentation

is not enabled. At runtime, each marker can be individually enabled, which makes

the branch execute both the stack setup and the function call.

The design of this infrastructure is voluntarily biased to minimize the performance

overhead when tracing is disabled. We give a hint to the compiler to position the
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instructions executed only when tracing is enabled away from cache lines involved

in standard kernel execution by identifying the branch executing stack setup and

function call as unlikely (using the gcc builtin expect()).

The performance impact of the marker mechanism is small, albeit globally hard

to notice with performance benchmarks. Most of it comes from the added branch,

although the added register pressure, and transforming some leaf functions into non-

leaf functions due to added function calls, are also adding to performance overhead.

A drawback of the Linux Kernel Markers is that it limits type verification to

scalar types due because its API is based on format strings. However, this allow us

to easily add new markers to source-code by modifying a single line. This limited

type-checking, can be problematic if pointers must be dereferenced by the tracer code.

For instance, a pointer to a structure could be passed as parameter, with the intent

of letting the probe access specific fields in this structure. However, the Linux Kernel

Markers only permit us to export a universal pointer (void pointer), leaving any

specific type-checking impossible.

A second issue is that the Markers hide the instrumentation in the source code,

keeping no global registry of the instrumentation. It is thus hard to impose namespace

conventions and to keep track of instrumentation modification without monitoring the

whole kernel tree.

8.2 Tracepoints

After experimenting with the Linux Kernel Markers, we decided to correct the

two downsides of this infrastructure. Hence, we created Tracepoints to deal with

this problem. They are extensively based on the Linux Kernel Markers code, with

major modifications performed to support full type checking. The Tracepoints are

now integrated in the Linux kernel and already used extensively.

The main difference between Tracepoints and Kernel Markers is that tracepoints

require an instrumentation declaration in a global header. It allows type-aware ver-

ification of the tracer probes (callbacks) connected to the instrumentation site by

declaring both the instrumentation call and the probe registration and unregistration

function within the same declaration macro, which is aware of the types expected. It

thus ensures that both the caller and the callee types will match. For example, we

have the following tracepoint declaration in a global header to instrument scheduler
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activity:

#include <linux/tracepoint.h>

DECLARE_TRACE(sched_switch,

TP_PROTO(struct rq *rq, struct task_struct *prev,

struct task_struct *next),

TP_ARGS(rq, prev, next));

Used to instrument the context switch function:

DEFINE_TRACE(sched_switch);

static inline void

context_switch(struct rq *rq, struct task_struct *prev,

struct task_struct *next)

{

[...]

trace_sched_switch(rq, prev, next);

[...]

}

It also provides the needed global instrumentation registry: all global tracepoint

declarations are kept in the include/trace/ directory of the Linux kernel tree.

The rest of the infrastructure is similar to Linux Kernel Markers. The com-

mit log of Tracepoints merge into the Linux kernel 1 shows that performance over-

head of added tracepoints is very small, with kernel scheduling overhead benchmarks,

hackbench, showing results from a degradation of less than 2 % to acceleration of

a similar amount, which can be attributed to the operating system noise and cache

effects.

8.3 Immediate Values

As pointed out in Section 8.1 on Kernel Markers, one of the main performance

overhead of disabled static instrumentation techniques presented above is caused by

1. http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;

h=97e1c18e8d17bd87e1e383b2e9d9fc740332c8e2

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=97e1c18e8d17bd87e1e383b2e9d9fc740332c8e2
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=97e1c18e8d17bd87e1e383b2e9d9fc740332c8e2
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reading a value from memory to test and branch over the disabled stack setup and

function call.

To overcome this problem, the Immediate Values infrastructure, which is pre-

sented in [28], replaces the standard memory read, loading the condition variable, by

a constant folded in the immediate value encoding of an instruction operand. This

removes any data memory access to test for disabled instrumentation by keeping all

the information encoded in the instruction stream. However, this involves dynami-

cally modifying code safely against concurrent multiprocessor accesses. This requires

either stopping all processors for the duration of the modification, or using a more

complex, yet more lightweight, core synchronization mechanism, our choice being the

temporary breakpoint bypass [97].

An objective of this infrastructure is to minimize interference with the optimiza-

tions when compiling the Linux kernel with gcc. Therefore, all constraints gcc imposes

on what can be done in inline assembly gcc-extensions must be taken into account.

Jumping outside of assembly statements is forbidden. Given that the function call

performed by the instrumentation is produced by the compiler, it cannot be added

to the inline assembly.

Initial experiments to replace the immediate value load and test by a static jump

(itself jumping to either the enabled or disabled branch) are promising. However,

proper implementation of this code flow activation technique requires compiler-level

modification, because knowledge of basic block location is required and inline assem-

bly is not permitted to jump to gcc-generated code. A team of kernel and compiler

developers at Redhat already started to tackle the task of extending gcc to add this

new feature.

8.4 Analysis of LTTng Latency Impact

Benchmarks presented in Chapter 5 mainly address the question of system through-

put impact caused by the LTTng tracer. However, in some systems, response time is

more critical than throughput. This aspect is addressed by performing a comparative

study of network response-time benchmarks in the presence and absence of tracing.

We choose to measure network latency impact to characterise the tracer because it

is a typical application where latency impact must be kept low. Web servers and

domain name servers, which must answer queries quickly, are a good example of this
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application class.

We determine the tracer impact on the average network response time of a com-

puter by measuring the packet round-trip time of 100,000 ping echo requests. This

test involves two hosts, one initiating the request and the second answering to it. The

round-trip time consists in the time it takes for the packet to be generated by ping,

sent to the network card through the operating system, sent over the network, re-

ceived by the second host’s operating system kernel, and sent back to the originating

host through a similar route.

The repetitive nature of the test might show lower latencies than standard pro-

duction systems due to the high cache locality of the workload. Hence, to make this

test more representative of a real-life operating system, a workload is executed in

the background, precisely to trash the processor caches and branch prediction. The

chosen workload is a cache-hot Linux kernel build spread across all the machine cores.

The first latency test realised is performed in a setup minimizing the network

effect where both the sender and the receiver are on the same computer, using the

local host loopback interface. An 8-core Intel Xeon, clocked at 2.0 GHz is used. The

number of events recorded per packet is identified by manually inspecting the recorded

trace. The 95 % confidence interval for the difference between the two means found

in Table 8.1, is [8.88, 9.12] µs, which means that flight recorder tracing of 27 events

adds a latency overhead on local host communication between 8.88 and 9.12 µs, with

a 95 % certainty. This corresponds to an added latency between 328 and 338 ns

per event, which is about 666 cycles. It is higher than the overhead measured with

micro-benchmarks in the result section of Chapter 5, which is 119 ns per events for this

architecture. The difference between these latency results and the micro-benchmarks

measurements can be attributed to processor pipeline, branch prediction and cache

effects, which are higher in the latency test due to lower temporal and spacial locality

than a tight loop calling the tracer.

Table 8.1 Tracer latency overhead for a ping round-trip. Local host, Linux 2.6.30.9,
100,000 requests sample, at 2 ms interval

Test Events / avg. std.dev.
round-trip (µs) (µs)

No tracing – 40.0 12.8
Flight recorder tracing 27 49.0 14.3
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Similar results, presented in Table 8.2 are obtained by sending ping echo requests

from a remote host over a 100 Mb/s network. The number of events generated on

the traced receiver side for each echo request is 7. The 95 % confidence interval for

the difference between these two means is [1.56, 2.85] µs. Therefore, with 7 events

per request, the added latency impact is between 223 and 407 ns per event, which

is consistent with the measurements from the local host ping test. The confidence

interval of network testing is much larger that the local host test due to an higher

standard deviation on the measurements.

Table 8.2 Tracer latency overhead for a ping round-trip. 100 Mb/s network, tracing
receiver host only, Linux 2.6.30.9, 100,000 requests sample, at 2 ms interval

Test Events / avg. std.dev.
round-trip (µs) (µs)

No tracing – 256.10 73.3
Flight recorder tracing 7 258.31 73.3

Hence, the analysis of these measurements allows us to affirm that the 95 %

confidence interval of the tracer latency impact on a busy system is between 328 and

338 ns per event on the Intel Xeon E5405.

8.5 Analysis of LTTng Real-Time Impact

Real-time impact of algorithms can be categorized following the guarantees they

provide. The terms used to identify such guarantees evolved through time in the

literature [36, 37]. The terminology used in this thesis is detailed in [37]. The

strongest non-blocking guarantee is wait-free, which ensures each thread can always

make progress and is thus never starved. A non-blocking lock-free algorithm only

ensures that the system as a whole always makes progress. This is made possible

by ensuring that at least one thread is progressing when concurrent access to a data

structure is performed. An obstruction-free algorithm offers an even weaker guaran-

tee than lock-free: it only guarantees progress of any thread executing in isolation,

meaning that all competing concurrent accesses can be aborted. Finally, a blocking

algorithm does not provide any of these guarantees.

The LTTng kernel tracer synchronization at the probe site is wait-free, the strongest

possible form of non-blocking guarantee. Given the use of per-CPU buffers and pre-
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emption disabling, the only possible concurrency comes from interrupts. Therefore,

if we know the interrupt frequency (as we should in a real-time system), we can put

an upper bound to the number of times a buffer space reservation can be re-started,

hence meeting wait-free guarantees. All accesses to trace-control data structures are

protected by read-side RCU, which is also wait-free.

However, if the algorithm is either deployed in user-space where preemption cannot

be disabled cheaply (without going to the kernel), or uses a global buffer shared

amongst processors, then the LTTng synchronization mechanism only provides non-

blocking lock-free guarantees for the write-side. The system as a whole is guaranteed

to make progress, because at least one compare-and-swap will succeed amongst each

concurrent attempts. However, it is not wait-free in this configuration, because a

slow thread may be starved by other concurrent faster threads writing to the buffer,

causing the slower thread to never succeed reserving space.

The read-side of the buffering algorithm is blocking: if a writer thread is stopped

between its space reservation and commit operations, a partially committed sub-

buffer will stop readers from accessing it until the stopped writer thread completes

its commit. However, the most important guarantees for a tracer are those affecting

the write-side, and thus read-side real-time guarantees are allowed to be weak.

It is important to consider the worse-case execution time of the tracer to provide

an accurate upper-bound on the constant time per event added. Section 8.4 presents

the average latency impact, which cannot be used as an upper bound. It is recom-

mended to consider a sub-buffer switch occurring at each event, reading and writing

to cache-cold memory, executing cache-cold instructions, as the worse-case scenario.

It is possible to generate a test-case with these worse-case performances by forcing an

explicit sub-buffer switch, and by invalidating all the CPU cache-lines after each com-

mit. Such a modified LTTng tracer takes 6349 ns per event on the Intel Xeon, which

is 20 times higher than the average 328–338 ns latency. Part of this cost (238 ns) is

due to sub-buffer switch 2. The main slowdown is caused by access to instructions

and data from memory rather than cache. Ensuring this upper execution-time bound

more strictly could additionally require disabling other processor features, such as the

branch prediction buffers, which make real-time behavior harder to predict. For hard

real-time systems, restarts caused by nested interrupt handlers should also be added

2. The 238 ns added by sub-buffer switch is the difference between a cache-hot event write with
forced sub-buffer switch (357 ns) and a cache-hot event write (119 ns).
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to the worse-case probe execution time.

8.6 Formal verification of LTTng

The formal verification of LTTng buffering algorithms is divided in a presentation of

the model, followed by the results of correctness, progress and reentrancy verification.

This corresponds to a verification of the following properties: absence of corruption,

real-time determinism and NMI reentrancy.

Algorithms with lock-free and wait-free properties guarantee a predictable real-

time impact on the system behavior. As demonstrated in Chapters 4 and 5, using

a lock-less buffering scheme also permits to diminish the performance impact com-

pared to locking-based alternatives. However, these come at the expense of increased

algorithmic complexity. To make matters worse, modern architectures adds complex

memory ordering requirements to ensure proper synchronization. With standard lock-

ing, the appropriate memory barriers are added to the locking primitives to ensure

correct memory ordering, but lock-free algorithms must deal with these concerns ex-

plicitly. These must be taken into account in the wait-free scheme design. To ensure

that the LTTng tracer indeed meets the real-time and correctness guarantees claimed,

we resort to formal verification by model-checking.

We created a Promela model abstracting the LTTng buffering scheme to enable

the verification of safety and progress properties on this model. The verification by a

model-checker proves that all possible model execution traces are free from starvation:

– of the system as a whole (lock-free),

– of each individual thread (wait-free).

It also permits to verify that all model execution traces are free from data corrup-

tion between:

– concurrent writer threads,

– reader and writer threads,

– writer thread and nested interrupt handler writer,

– reader thread and nested interrupt handler writer.

This permits to conclude that the LTTng model is safe and ensures progress.
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8.6.1 Modeling

Due to the state-space explosion inherent to the model, modeling an abstraction

of the LTTng buffering scheme is required to keep the state-space size within bounds

manageable by the model-checker. This abstraction must cover all the algorithm

paths, with a limited amount of redundancy.

Keeping the model state-space within manageable limits has been one of the major

challenges of LTTng model-checking. I managed to keep all verifications within 4 GiB

of memory using the following techniques. I limited the number of sub-buffers to

two, with two entries each. The counters for a buffer could therefore be represented

on 2 bits. One extra bit has been added to represent the eventual side-effects of

higher order bits. All counters are kept within this range using a modulo operation.

Subtractions are done in the range of positive values to ensure Promela does not

apply modulo on negative values.

The buffer content, and thus the verification for racy concurrent access to a buffer

location, is represented with 1 flag per entry. When a process accesses a buffer

location, it checks if this flag is raised with an assertion, sets the flag, and then clears

it. This scheme is used to detect incorrect concurrent accesses to a shared memory

region.

The buffer model includes an extra sub-buffer owned by the reader process in

flight recorder mode. It is exchanged atomically with each writer’s sub-buffer before

accessing them for reading by first checking if the writer has raised the reference flag

in the top-level sub-buffer structure pointer. This scheme exchanges entries in a table

mapping the buffer offsets to the actual location of the race-verification flags, which

corresponds to the memory locations used for read and write. It is important to

understand that buffer space reservation synchronization counters are orthogonal to

the actual references to physical buffer locations. Therefore, the top-level sub-buffer

pointers can be exchanged without modifying the reserve and commit counters.

Modeling multiple concurrent processes happens to be highly space-consuming.

An approach where only pairs of individual threads interacting are activated is used.

Verification is thus performed in multiple model configurations, each verifying the

interaction between different processes. This helps to reduce the state-space required,

which is especially important for progress verification. Each process consists of an

infinite loop, either reading from or writing to the buffer. Modeling an infinite loop

is important for progress verification, because it is based on the presence or absence
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of non-progress cycles.

Representation of interrupts is done as a variation of the process model. Interrupts

are represented by a separate thread instance waiting to be awakened between each

atomic statement executed by the interrupted process. Control only returns to the

interrupted process once the interrupt handler has completed its execution.

Another challenge faced has been to ensure that the model coverage is adequate.

The Spin model-checker indicates which statements has been executed, and which

have not, but does not provide information about state coverage. For instance, it

does not indicate if the model reached a 3-bit counter overflow, which could present

corner-cases. We proceed to verification of the model coverage by error-injection. We

verify that the model-checker reaches a state where 17 events were written by adding

an assertion. The same technique is used to ensure that 17 events were lost, and

17 events were read. The choice of the value 17 is based on the amount of events

required to reach a commit counter 3-bit overflow. This ensures that all possible

values within the 3-bit commit counter, counting from 0 to 7 for each of the two sub-

buffers, were encountered at least once, and that the overflow state has been covered.

This naturally includes overflow of the reserve and consumer counts, which overflow

twice per commit-count overflow.

The model realised for LTTng is a simpler model than the framework presented

in Chapter 7: it assumes sequentially consistent machines. Besides this assumption,

concurrent execution of write-sides on multiple processors and from interrupt and NMI

context are modeled, with concurrent readers, in non-overwrite and overwrite (flight

recorder) modes. A model including the effects of memory reordering could be done,

but would involve carefully ensuring that the state-space keeps a manageable size.

8.6.2 Correctness

Appropriate synchronization of multiple writers, a reader thread and interrupts is

verified using the per-entry flag, which identifies that a buffer entry is being accessed.

It permits detections of invalid concurrent accesses to portions of the ring-buffers and

treats them as errors. This ensures that threads have exclusive access to ring-buffer

slots.

This verification has been performed with the following scenarios, for both over-

write and non-overwrite modes:
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– concurrent writer threads,

– reader and writer threads,

The verification has been successful for each scenario. The model-checker required

up to 3.0 GiB of memory to perform an exhaustive model safety verification. Each

verification required up to 2 minutes. The depth of the execution traces graph manip-

ulated reached 2.1 million states. Nested interrupt verification required less resources,

because they generate less possible states than two threads executing concurrently.

Concurrent threads executing in overwrite mode required the most computational

resources.

8.6.3 Real-Time Impact

Providing hard real-time guarantees usually require to audit each component of

the system to take into account priority inversions caused by blocking. As shows

the detailed analysis of the priority inversion problems that occurred on the Mars

Pathfinder [98], tracer tools are often the only type of diagnostic tool able to debug

systems facing real-time deadline problems in the field.

However, in order for this type of tool to be reliable and useful in such systems, the

real-time behavior of the system must be, ideally, left unchanged when the tracer is

active. Blocking on mutual exclusion semaphores is therefore out of question, because

it would completely change the priority inheritance chains between the processes due

to an added shared resource: the trace buffers.

The approach chosen for LTTng to deal with real-time is to never block on any re-

source whatsoever when called from the instrumented kernel. This has been achieved

by resorting to wait-free algorithms to manage synchronization between multiple con-

current contexts. The probe executes a bounded number of instructions, including

CAS loops, which can be restarted by a well-defined set of concurrent operations,

performed either by local interrupt handlers or a limited number of reader processes.

This class of algorithms provides the following guarantees: each individual thread

is guaranteed to never be starved by any other concurrent process. Hence, the system

as a whole, as well as each individual thread, are ensured to always progress. This

encompasses the weaker “lock-free” guarantee. Both of these algorithm classes imply

that the algorithm never blocks.

I performed the formal verification that this guarantee is actually met by using
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the same Promela model of the LTTng buffering scheme used for correctness verifi-

cation. Spin permits to verify for non-progress loops in the program. Verifying for

system-wide progress (lock-free) is done by adding progress statements in each thread

executed in the model. Weak fairness must be disabled, because the verifier would

not consider loops where one thread is stopped. A stricter verification, for wait-free

guarantees, is performed by only adding a progress label to a single thread and by

running the verification only considering non-progress for infinite execution cycles

where the thread of interest is being enabled and executed. This permits to verify

that a single process is starvation-free, and thus that the algorithm is wait-free.

The result is that LTTng is wait-free when each CPU writes in its own buffers and

that LTTng is only lock-free when multiple processors can write to the same buffer or

if preemption is left enabled on a single processor. This is caused by the ability for

a fast writer thread to continuously succeed at reserving buffer space, while a slower

thread would indefinitely fail, and thus starve. Therefore, the kernel-level LTTng have

wait-free guarantees, and user-space implementations, due to their inability to disable

preemption when reserving buffer space, are only lock-free.

Kernel-level wait-free verification has been performed by modeling, in both over-

write and non-overwrite modes:

– one writer, one reader thread,

– one writer, with a nested interrupt handler writer.

User-level lock-free verification has been performed by modeling two writer threads

writing in a shared buffer. The system-wide progress verification succeeds, but the

per-process progress validation fails, due to space reservation starvation.

The overwrite mode has two additional synchronizations. The first is that the

writer can push the reader position when the buffer is full. This is performed with

a CAS operation on the reader’s position. It has been verified that the CAS loop can

never cause writer starvation, because the reader’s position can only be concurrently

changed by both the reader and the writer in the same direction. Hence, the writer

can only retry this “push” operation for an amount of times bounded by the number

of sub-buffers per buffer, which is the maximum number of updates which can make

the writer thread restart before the reader empty the buffer and blocks.

The second synchronization added by the overwrite mode involves letting the

reader thread exchange individual sub-buffers with its own extra sub-buffer before

reading them. This exchange is performed with a CAS instruction which verified if
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the use flag is set by the writer. If the sub-buffer is in use, the reader will retry later.

On the writer side, a CAS instruction is used in a busy-loop to set and clear the use

flag (for portability, because an atomic instruction to set a mask is not available for

all architecture in the Linux kernel). Given that the reader can only ever exchange

a sub-buffer and cause the writer to restart once (further accesses to that sub-buffers

are impossible, because the reader will block on the writer position), the reader thread

cannot starve the writer.

The model involving one reader and one writer thread in overwrite mode re-

quired significantly more resources than the other verifications. Resources required

to perform this verifications reached 1.5 GiB of memory, but required the use of

BDDs (Binary Decision Diagrams) to encode the state-space more compactly, leading

to a much slower execution of the model-checker, which took 25 hours to verify the

model. The search depth reached 3.0 million execution steps.

8.7 Reentrancy

Verification of the LTTng buffering scheme NMI-reentrancy is performed using the

same model used to ensure lock-free and wait-free guarantees of the algorithm.

The correctness verification presented in Section 8.6.2 ensures that no data cor-

ruption can occur when two concurrent threads, either two writers or one reader and

one writer, execute. Proving that NMI handlers nesting on threads cannot corrupt the

trace buffers is a special case of modeling two concurrent threads. The model involv-

ing two standard writer threads and the model involving one reader and one writer

ensure that up to an infinite number of interrupts executing between two atomic steps

do not cause corruption.

The progress verification presented in Section 8.6.3, which guarantee lock-free be-

havior for user-space implementations and wait-free behavior for kernel implementa-

tions, suffice to ensure that NMIs nesting on threads cannot cause deadlocks. Absence

of deadlock due to one or multiple interrupts between two atomic steps is verified

by the standard thread models, where system progress is ensured when two threads

(either two writers or one reader and one writer) execute concurrently. This includes

the case where one thread is stopped and the other thread (representing the inter-

rupt) executes forever. Therefore, writer interrupts nested over either the reader or

the writer cannot cause any system starvation nor deadlock.
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Modeling of nested interrupt handler impact on wait-free guarantees is performed

by verifying the interrupt model progress with weak fairness. This type of scheduling

is required to model the effect of interrupts on a local processor, which could not,

for instance, be scheduled like an ordinary thread. Therefore, the LTTng buffering

algorithm could be considered lock-free with respect to interrupts, because they cause

the writer thread to restart. However, given the wait-free and lock-free definitions

apply to two concurrent threads and not to interrupts nesting over them, the wait-free

guarantee applies integrally to the LTTng buffering scheme. For all practical purposes,

interrupt rate is usually known in a real-time system, which is not necessarily true

for concurrent thread execution speed.
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Chapter 9

General Discussion

This chapter recalls the tracer properties identified as research objectives and ex-

plains, by construction, how the tracer respects them. This is followed by a discussion

of the application domains enabled by satisfying these properties. Finally, contribu-

tions to other scientific projects and to the Linux kernel are presented to demonstrate

the scientific and industrial impacts of this research.

9.1 Tracer Properties

After studying the needed properties, we implemented an innovative tracer meet-

ing all our requirements. The properties we identified led the tracer design choices,

allowing us to fulfill requirements not met by previously existing tracers. Ensuring

that the LTTng tracer respects the:

– latency,

– throughput,

– scalability,

– real-time,

– portability,

– and reentrancy

properties requires that each tracer component executing in the traced execution

context respects them. The components to consider are: Tracepoints, Linux Ker-

nel Markers, Immediate Values, trace clock, tracing control and the LTTng buffering

scheme.

The Tracepoints and Linux Kernel Markers use the RCU synchronization mecha-

nism to deal with concurrency from multiple execution contexts. Only an RCU read-

side lock is required on the traced execution context to protect the array of callbacks

to call. Enabling and disabling the instrumentation sites is performed with an atomic

modification of the condition variable, which does not require any kind of synchro-
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nization whatsoever. As we have shown in Chapter 7, RCU read-side meets all the

needed properties.

The Immediate Values, an optimization of the Tracepoints and Linux Kernel Mark-

ers condition variable, perform dynamic code modification. Dealing with Intel and

AMD erratas with respect to code modification in multiprocessor environment, how-

ever, involves core synchronization. This is performed by using a scheme involving

a breakpoint executing bypass code and IPIs sent to all other processors to ensure

they execute a core serializing instruction, as shown in Section 8.3. Using this scheme

allows us to perform code modification while letting the modified code be executed

through the bypass. This therefore satisfies the same wait-free guarantees as RCU,

which ensures deterministic real-time and allows NMI reentrancy.

The time-source used is typically a direct register read, which involves no synchro-

nization. However, when only 32-bit time-stamp counters are available, extending

them to 64 bits is necessary. As presented in Section 4.6.3, we propose a RCU-based

trace clock to offer such a 64-bit time-base to these architectures. The traced execu-

tion context only need to use RCU read-side locking, which satisfy our properties.

Tracing control operations, which includes the creation and deletion of active trace

sessions and modification of their state while tracing is active is also synchronized

using RCU read-side.

Last but not least, the LTTng buffering scheme has been verified to meet all of the

low-latency, high-throughput, scalability, deterministic real-time impact (wait-free),

portability, and reentrancy properties.

By demonstrating that each tracer component respects these properties, we can

affirm, by construction, that they are also satisfied by the tracer as a whole. As

a result, the LTTng tracer goes further than existing tracing solutions, which each

satisfy only a few of these properties.

9.2 Tracer Application Domains

This section associates each property met by the tracer to the application domains

reached, and gives examples of users requiring tracing in each of these domains,

some of which are already using LTTng. This demonstrates that this research has an

important impact on the industry in all of the application domains targeted by the

identified properties.
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The properties of low-latency, low-throughput impact, and linear scalability, tar-

gets commercial servers running Linux. The Google servers are a good example of

systems requiring such a tracing solution and willing to integrate a tracer. They

need to enable tracing on their live production servers in order to be able to re-

produce and solve performance issues and bugs. This requires that the overhead

and disturbance of the tracer must be minimal. The LTTng tracer, by meeting

the aforementioned properties, meets these low-impact requirements and is a viable

solution for Google servers.

Soft real-time applications at Autodesk use LTTng within their development. These

rely on meeting soft real-time constraints, which require the tracer to have a low im-

pact both on system throughput and real-time response on multi-core computers.

This type of property is also needed by Ericsson for their telecommunication equip-

ment. Siemens also rely on LTTng internally for the development of some of their

products running Linux.

Ensuring that the code executed by the probe is wait-free enables tracing of real-

time systems without changing their behavior in a non-predictable way. LTTng is

already integrated as the tracing solution for Wind River Linux, Monta Vista and

STLinux distributions. These distributions also benefit from the portability of LTTng

by allowing tracing of various computer architectures.

Portability also enables Nokia to use LTTng for the development of their Maemo

internet tablets and phones based on the ARM OMAP3 architecture.

Reentrancy of the tracer code for contexts ranging from thread context to interrupt

and NMI contexts is important to allow large instrumentation coverage. This benefits

Linux kernel developers who need to extend kernel instrumentation: they do not have

to understand the tracer internals to ensure the instrumentation they add will not

crash the kernel when they enable tracing. Hence, this contributes to the Linux end

users by ensuring a more stable tracing infrastructure which can be trusted.

All these applications of LTTng demonstrate that it fills a tracing need in many

industry application fields for low-impact kernel tracing. The consequence of our

research is to improve multi-core system debugging facilities, providing a tool which

helps to find performance bottlenecks, hence speeding up applications by finding all

sorts of inefficient resource usage. This helps improving response time, real-time

response, system throughput and energy efficiency.
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9.3 Contributions

This research had other impacts than those directly related to the LTTng tracer.

The Local Atomic Operations, Kernel Markers and Tracepoints, individually con-

tributed to other fields and other projects. This section shows the influence of these

contributions. We show that user-space tracing, which is outside of the main scope

of this research, has been pioneered by this research. User-space tracing is discussed

in this section.

9.3.1 Local Atomic Operations

After identifying the benefit of per-CPU local atomic operations in Chapter 4, we

identified that extending the Linux kernel to support these operations was beneficial.

For example, per-CPU counters and CPU-local data shared between interrupt handlers

and thread context can be accelerated using this technique. Therefore, we imple-

mented them for all architectures supported by Linux, using the slower SMP-aware

atomic operations as a fall-back when needed. We also added documentation of these

operations to the Linux kernel tree to explain their usage and semantics.

Local atomic operations are meant to provide fast and highly reentrant per-CPU

counters. They minimize the performance cost of standard atomic operations by

removing unneeded inter-CPU synchronization. This is achieved by removing the LOCK

prefix and memory barriers normally required to synchronize across CPUs.

Having fast per-CPU atomic counters is interesting in many cases: it does not

require disabling interrupts to protect from interrupt handlers and it permits coherent

counters in NMI handlers. It is especially useful for tracing purposes and for various

performance monitoring counters.

The documentation written is now part of the Linux kernel tree 1. The per-CPU

atomic operations we created have been added to the per-architecture local.h files

in the mainline Linux tree.

We expect to see a much broader use of these primitives in other components of

the Linux kernel because they are now accessible to other kernel programmers, and

because they are now documented with a well-defined semantic.

1. http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;

f=Documentation/local_ops.txt

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/local_ops.txt
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/local_ops.txt
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9.3.2 Kernel Markers

The Kernel Markers are a static instrumentation mechanism allowing kernel pro-

grammers to add instrumentation at the source-code level. They are the equivalent of

printk() in the Linux kernel for tracing instrumentation. They are principally used

for instrumentation prototyping. The improvement brought by this infrastructure

over the existing Kprobes is to enable instrumentation added directly at the source-

code level. This allows us to identify of local variables by the instrumentation, hence

guaranteeing their availability for extraction when tracing is enabled.

It allows us to extract richer and more precise information from the kernel, en-

abling improved debugging and tracing kernel facilities. This infrastructure has been

added to the Linux kernel mainline. It has been used to replace the KVM (Kernel-based

Virtual Machine) and SPE (Synergistic Processing Element) ad-hoc instrumentations

present in the mainline kernel.

9.3.3 Tracepoints

Tracepoints are an evolution of the Linux Kernel Markers, which provide stricter

type verification. Their benefit is also a more organized management of tracepoints

by keeping a global registry along with the kernel headers.

They have also been integrated to the Linux kernel, and are used extensively by

the Ftrace tracer. Using tracepoints allows us to decouple the tracing facilities from

the actual source-code instrumentation. The Tracepoint infrastructure allows many

concurrent tracers to be connected, which makes it a suitable core facility for kernel

instrumentation. It benefits Linux kernel developers by letting them organize kernel

instrumentation in a global tracepoint registry. Consequently, this also lets tracers

have a single common information source to consider, and thus enables kernel-wide

tracing.

As of today, 104 tracepoints are present in the mainline Linux kernel and major

development trees, some created by myself, but the vast majority contributed by

other Linux kernel developers.
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9.3.4 Fast User-space Tracing

User-space tracing aims at allowing tracing from lesser-privileged execution con-

texts. Its usefulness consists in letting application and library developers instrument

their own user-space applications to gather more precise information about their be-

havior to augment a system-wide trace. The objective is to obtain traces of both ker-

nel and user-space execution, allowing analysis to be performed on combined traces.

This will open the possibility to analyze and pinpoint bugs and performance issues

resulting in interactions between user-space applications, libraries and kernel-space.

One approach consists in using a system call to enable to use the kernel tracer as-is

to record events. However, this approach suffers from the overhead of the system call

trap, which is in many cases slower than tracing itself. This is why writing directly

to a shared ring-buffer from user-space is a more appealing solution.

Multiple prototypes of user-space tracers have been realised by porting the kernel

infrastructure to user-space context. The papers presented at the Linux Sympo-

sium [27, 28] present two different aspects of user-space tracing. The first paper [27]

presented a port of the LTTng kernel tracer to user-space, where a library was respon-

sible to perform the user-level tracing through a memory buffer shared between the

application and forked processes. This work was mostly intended to be a prototype.

The second paper [28] presented a user-level instrumentation prototype: a port of

the Linux Kernel Markers to user-space. These two prototypes, and the kernel-level

LTTng development performed since then, served as basis for the UST tracing library

currently being developed.

The work on user-level RCU synchronization presented in Chapter 6 has been

conducted with the primary objective of addressing the synchronization needs from

UST (User-Space Tracer). Given the fact that the user-space tracer implementation is

derived from the kernel LTTng tracer, it relies on the same synchronization primitives

to provide consistent tracer data structure access. Therefore, the lack of a proper RCU

implementation needed by the tracer library needed to be addressed to ensure that

the user-space tracer could benefit from performance characteristics similar that of

the kernel tracer.

User-space tracing opens a very promising research area by allowing collection

of detailed system-wide information. One actual limitation identified by modeling

the user-space buffering scheme is the fact that wait-free progress guarantees are

lost due to the inability to disable preemption, leaving only lock-free guarantees. It
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opens an interesting research area for scheduler interactions of real-time user-space

applications.

9.4 Scientific Studies Using LTTng

Our research has interesting impacts on scientific studies in other computer re-

search fields. It contributed to research which benefits from a very efficient tracing

tool. This section presents experiments where the LTTng tracer contributed to solving

problems and identifying solutions.

LTTng has been used to find the power variations over time in disk operations to

NOR and NAND flash devices at the driver level. It helped correlate device accesses with

CPU activity to find which type of memory requires less energy. This work has been

presented in article [99].

LTTng has also been used to trace user behavior over a longer time-period [100].

Over a week, user habits have been studied by tracing the exec() and exit system

calls. They used this information to see which applications are most likely to be run

concurrently.

Paper [101] describes the architecture of an operating system for future informa-

tion appliances. They use LTTng as their tracing infrastructure to feed information

to an anomaly detection service.

Hicham Marouani, in his work on internal clock drift estimation [102, 103], used

the LTTng kernel tracer to keep track of network packet arrival and monitor a GPS-

based reference clock to measure the precision of various techniques to synchronize

time across nodes.

Monitoring of kernel execution in the Lemona project [104] uses hooks inspired

from the Tracepoint and Kernel Marker mechanisms to allow probes to be dynamically

connected while keeping the performance impact low when disabled.

All these contributions of the LTTng tracer demonstrate that kernel-wide tracing

is useful to scientific research.
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Chapter 10

Conclusion and Recommendations

The core realization of this research is the creation of innovative synchronization

algorithms enabling the implementation of the LTTng tracer for the Linux operat-

ing system. This tracer satisfies properties of low-impact on the operating system

scalability, throughput and average latency, deterministic real-time response impact,

portability to various architectures and high degree of reentrancy. Benchmarks and

formal verification have shown that each of the tracer components meets these prop-

erties. The LTTng tracer meets requirements that the existing tracer predecessors only

met partially, which enables tracing of the Linux operating system, whose flexibility

allows its use in a large spectrum of application fields.

It has been possible to achieve these goals by carefully choosing, creating, de-

signing and implementing synchronization mechanism, which are RCU for read-side

synchronization and the custom LTTng buffering scheme to synchronize writes. Both

provide linear scalability and wait-free algorithmic guarantees, which are useful for

tracing multi-core systems, as well as ensuring real-time and reentrancy guarantees.

The original scientific contributions of this research include:

– the creation of the LTTng buffer synchronization algorithm,

– the creation of an RCU-based trace clock,

– the design of a complete kernel tracer based on wait-free, linearly scalable and

NMI-safe algorithms,

– application of self-modifying code techniques to efficiently manage instrumen-

tation activation,

– improvements to the RCU synchronization mechanisms in user-space context,

– creation of a generic architecture model for formal verification of parallel algo-

rithms, modeling weakly-ordered memory accesses and instruction scheduling.

All these contributions enabled the creation of a kernel tracer meeting all the

research objectives.

The appropriate response to the industry and open source community tracing
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requirements is demonstrated by the fact that some tracer components we created

(Tracepoints and Linux Kernel Markers) are integrated to the mainline Linux kernel

and that the LTTng tracer has a large community of users and contributors, namely

Google, IBM, Ericsson, Autodesk, Wind River, Fujitsu, Monta Vista, STMicroelec-

tronics, C2 Microsystems, Sony, Siemens, Nokia, and Defence Research and Develop-

ment Canada.

As a conclusion of this research, we can affirm that tracing heavy workloads on

a mainstream operating system running on multi-core architectures can be achieved

with only a minimal impact on the system’s throughput and average latency, while

preserving entirely the scalability, real-time response, portability and reentrancy of

the operating system. The implementation realized permits instrumentation coverage

of the entire operating system kernel, including NMI handlers.

Analysis of system-wide trace information involves the collection of traces from

both the kernel and user-levels. Following the promizing results of early experiments

done on fast user-space tracing, it is now worth stabilizing an infrastructure to provide

fast production-level user-space tracing to Linux users.

The heavy workloads which can now be traced on production systems enables the

collection of information to analyse and solve performance and behavior problems in

today’s complex computer systems. It it now worth exploring analysis made possible

by extracting this information by modeling the operating system to perform trace-

driven analysis.

Due to its usefulness for system monitoring, identification of performance bottle-

necks and debugging, having tracing active at all times on production servers and

appliances is a natural decision for systems developers if the performance penality

is low enough. This research demonstrated clearly that the impact of LTTng tracer,

when active, is low enough that it can be used on heavily loaded production systems

without hurting performances prohibitively.
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